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Preface

This year the mathematics department of UFPI has the honor
to celebrate the 60th birthday of its dearest professor. Actually
Professor Barnabé Pessoa Lima has been source of inspiration,
mentor and teacher for most part of the mathematicians from
Piauí State. Throughout all his professional life, through his
serenity and extreme humbleness, Professor Barnabé has been
a living proof that “simplicity is the ultimate sophistication”.†

The Meeting on Geometric Analysis was idealized to share this
special occasion with all his friends, former and current stu-
dents, as well as to demonstrate the tremendous respect and
admiration felt for the honoree. These notes arises out of a sin-
gelous demonstration of friendship and respect of the authors to
the honoree. Along with these notes, we give our best wishes
to Barnabé, that he might have many more years to continue
inspiring and encouraging us and other future mathematicians.

We wish to thank all the authors for their enthusiastic par-
ticipation and their cooperation in writing up these notes. We
would also like to thank the Universidade Federal do Piauí for
supporting this special meeting.

Leandro F. Pessoa
December 2017

†This quotation is often attributed to Leonardo da Vinci v
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Harmonic Forms and Theory of Submanifolds

Marcos Cavalcante†, Abraão Mendes† and Feliciano Vitório†

Dedicated to Professor Barnabé Pessoa Lima on occasion of his 60th

birthday

Abstract: In this note, we deal with compact free boundary
hypersurfaces with respect to compact strictly convex domains
in Rn+1. Our main result says that under suitable geometric
conditions the Betti numbers bi vanish for i = 1, . . . ,n−1.

1 Introduction

1.1 Brief Historical and Statement of the Main Re-
sult

The study of minimal free boundary surfaces begins in the mid-
dle of twenty century with the works of Courant [5] and Lewy
[9]. Along this period, very many breakthrough works were
made by renowned authors, for instance, Nitsche [14], Ros [15]
and Meeks and Yau [13]. More recently, the theme was strongly
influenced by the works due to Fraser and Schoen [6, 7, 8]. The
present paper is a concise version of a forthcoming paper by the
authors that contains the following topological

†The authors were partially supported by CNPq-Brazil 1



M. Cavalcante, A. Mendes and F. Vitório

Theorem 1.1. [4] Let Mn be a compact free boundary hypersur-
face with respect to Ω. Suppose that ∂Ω is (κ, p)-convex. There
exists a positive constant c = c(n, p,r,r,κ), such that if ∥Φ∥2 < c,
then, for 1 ≤ p ≤ n−1, the cohomological group H p(M) is trivial.

It is worthwhile to say that this work was partly inspired in
the works [1], [2], [11].

1.2 Geometric Setting and Basic Definitions

Let Ω be a compact domain in Rn+1 with smooth boundary ∂Ω.
Let {κi}1≤i≤n−1 be the principal curvatures of ∂Ω, i.e., the eigen-
values of the shape operator B = −∇ν∂Ω

on ∂Ω, where ν∂Ω is the
outward unit normal vector field. For each x ∈ ∂Ω and p ∈ {1 ≤ i ≤
n−1} define

κ(p)(x) = inf
1≤i1<⋯<ip≤n−1

(κi1 +⋯+κip)

We say that ∂Ω is (κ, p)-convex if

inf
x∈∂Ω

κ(p)(x) ≥ κ > 0.

Remark 1. It is simple to verify that if ∂Ω is (κ, p)-convex, then
∂Ω is (κ,q)-convex, for any q ≥ p.

For a fixed point x0 ∈ int(Ω), we say that (x0,r(x0),r(x0)) is
an admissible triple if B(x0,r(x0)) ⊂Ω, B(x0,r(x0)) ⊃Ω and for any
ε > 0, B(x0,r(x0)−ε) /⊃Ω. We call the positive number

τ(Ω) = sup
x0∈int(Ω)

τ(x0) = sup
x0∈int(Ω)

{r(x0)
r(x0)

}

as the eccentricity of Ω. We notice that, by continuity and com-
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Harmonic Forms and Theory of Submanifolds

pactness classical results, there exist a point x ∈ int(Ω) such that
τ(x) = τ(Ω).

Let x ∶Mn→ M̄ be an isometric immersion of an n-dimensional
manifold M in a Riemannian manifold M̄. Let us denote II the
second fundamental form and H = 1

n tr(II) the mean curvature
vector field of the immersion x. The traceless second fundamen-
tal form Φ is defined by

Φ(X ,Y) = II(X ,Y)−⟨X ,Y ⟩H,

for all vector fields X ,Y on M, where ⟨ ,⟩ is the metric of M. A
simple computation shows that

∣Φ∣2 = ∣II∣2−n∣H ∣2.

In particular, ∣Φ∣ ≡ 0 if and only if the immersion x is totally um-
bilical.

We say that a compact hypersurface M is free boundary with
respect to Ω if the following conditions hold:

i) M ⊂Ω and int(M)∩∂Ω = ∅;

ii) ∂M ⊂ ∂Ω and ∂M meets ∂Ω orthogonally.
Remark 2. It is an important fact that if M is free boundary
with respect to Ω, then the shape operator on the boundary of M

is the restriction of the shape operator of ∂Ω to ∂M. In particular,
If ∂Ω is (κ, p)-convex, then ∂M is (κ, p)-convex.

Let Mn be a compact Riemannian manifold with smooth bound-
ary and let denote by Λ

p(M) the space of differential p-forms on
M. There exist two operators that play a fundamental role in
the theory, namely, the exterior differential

3
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d ∶Λp(M) →Λ
p+1(M),

and the codifferential operator

d∗ ∶Λp(M) →Λ
p−1(M),

given, in terms of the Hodge star operator, by d∗ = (−1)n(p+1)+1 ∗
d∗. The usual form Laplacian is given by

∆ = dd∗+d∗d.

In order to obtain topological results via the Hodge-de Rham
Theorem, we define two sets

Hp
N(M) = {ω ∈Λ

p(M);dω = 0,d∗ω = 0 in M and ινω = 0 on ∂M} ,

called as the set of the tangential harmonic p-forms and

Hp
T (M) = {ω ∈Λ

p(M);dω = 0,d∗ω = 0 in M and ν ∧ω = 0 on ∂M} ,

called as the set of the normal harmonic p-forms.

2 Analytical and Topological Ingredients

The fundamental tool in our result is the following Hodge-de
Rham Theorem (See , for instance, [18]),

Theorem 2.1. Let M be a compact orientable manifold with non-
empty boundary. For every p = 0,1,⋯,n the set of harmonic p-
forms that are tangential to ∂M Hp

N(M) is isomorphic to the p-th
cohomology group of M H p(M), in short,

Hp
N(M) ≃H p(M).

4
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Moreover, since the Hodge star operator gives an isomorphism
between Hp

N(M) and Hn−p
T (M), we have the following chain of iso-

morphisms

Hp
T (M) ≃Hn−p

N (M) ≃Hn−p(M) ≃Hp(M,∂M;R),

where Hp(M,∂M;R) is the p-th relative homology group and the
last isomorphism is a consequence of Poincaré-Lefschetz duality.

The proof uses the called Bochner Technique so we need the
following Weitzenböck formula (for a proof see, for instance, the
excellent book of P. Li [10] )
Lemma 2.1. Let ω ∈Λ

p(M) be a p-form in M. Then

1
2

∆∣ω ∣2 = ∣∇ω ∣2+⟨∆ω,ω⟩+⟨Rp(ω),ω⟩

where Rp is the Weitzenböck curvature.

Now, if ω ∈ Hp
N(M) then the Weitzenböck formula says that

∫
M
∣∇ω ∣2+⟨Rp(ω),ω⟩ = −∫

∂M
⟨Bp(ω),ω⟩,

where

(Bp(ω))(e1, . . . ,ep) =
p

∑
i=1

ω(e1, . . . ,Bei, . . . ,ep),

B = −∇ν∂M on ∂M is the shape operator of ∂M on M and ν∂M de-
notes the outward unit normal vector field,.

If {ei}i=1,⋯,n−1 is a frame that diagonalizes the shape opera-
tor, then

(Bp(ω))(ei1 , . . . ,eip) =
⎛
⎝∑j

κi j

⎞
⎠

ω(ei1 , . . . ,eip),

5
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Thus, if ∂Ω is (κ, p)-convex, we have

⟨Bp(ω),ω⟩ ≥ κ ∣ω ∣2.

Analogously, if ω ∈ Hp
T (M) then

∫
M
∣∇ω ∣2+⟨Rp(ω),ω⟩ = −∫

∂M
⟨B∗p(ω),ω⟩,

where B∗p = ∗Bn−p∗, that is,

∫
M
∣∇ω ∣2+⟨Rp(ω),ω⟩ = −∫

∂M
⟨Bn−p(∗ω),∗ω⟩.

Thus, if ∂Ω is (κ,n− p)-convex, we have

⟨Bp(ω),ω⟩ ≥ κ ∣ ∗ω ∣2 = κ ∣ω ∣2.

We can summarize the results above in the following

Lemma 2.2. (Weitzenböck formula) Assume that ω ∈ Hp
N , if ∂Ω

is (κ, p)-convex, then

∫
M
∣∇ω ∣2+⟨Rp(ω),ω⟩ ≥ −κ∫

∂M
∣ω ∣2. (2.1)

Assume that ω ∈ Hp
T , if ∂Ω is (κ,n− p)-convex, then

∫
M
∣∇ω ∣2+⟨Rp(ω),ω⟩ ≥ −κ∫

∂M
∣ω ∣2. (2.2)

Lemma 2.3. (Kato inequality) If ω is a harmonic p-form on Mn

then
∣∇ω ∣2 ≥ (1+Kp)∣∇∣ω ∣∣2, (2.3)

where

6
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Kp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n− p

, if 1 ≤ p ≤ ⌊n
2⌋ ,

1
p
, if ⌊n

2⌋ < p ≤ n−2.

The next two lemmas are addressed for submanifolds

Lemma 2.4. (Lin) [12] If Mn is isometrically immersed in Rn+1,
then

⟨Rp(ω),ω⟩ ≥ (p(n− p)H2− p(n−p)
n ∣Φ∣2

− ∣n−2p∣
√

p(n−p)
n ∣H ∣ ⋅ ∣Φ∣) ∣ω ∣2.

(2.4)

The last tool we need is the Hardy inequality for subman-
ifolds recently discovered by Batista, Mirandola and the third
named author in [3]. In our geometric setting it can be read as

Lemma 2.5. (Batista, Mirandola, Vitório) [3] Let X ∶ Mn → Rn+1

be an isometric immersion, where Mn is a compact Riemannian
n-manifold with boundary ∂M. We consider the point x as the
origin of Rn and r = ∣X ∣, we have

∫
M

u2 ≤ ( 2
r(n−2))

2

∫
M
∣∇u∣2+( n

r(n−2))
2

∫
M
∣H ∣2u2+ 2

n−2
(r

r
)

2

∫
∂M

u2,

for all nonnegative function u ∈C1(M).

3 Proof of Theorem 1.1

Suppose that ∂Ω is (κ, p)-convex and r(x) = 1. Let ω be a tangen-
tial harmonic p-form with p ≤ ⌊n

2⌋ and let u = ∣ω ∣. Then, plugging
Kato’s inequality in the Weitzenböck formula and using Lemma
2.4 we get

7
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−κ ∫∂M u2 ≥ n−p+1
n−p ∫M ∣∇u∣2+ p(n− p)∫M H2u2− p(n−p)

n ∫M ∣Φ∣2u2

−(n−2p)
√

p(n−p)
n ∫M ∣H ∣∣Φ∣u2

Using Cauchy-Schwartz inequality and taking the supremum of
∣Φ∣ we have

−κ ∫∂M u2 ≥ n−p+1
n−p ∫M ∣∇u∣2+ p(n− p)∫M H2u2− p(n−p)

n ∫M ∣Φ∣2u2

−(n−2p)
√

p(n−p)
n ( ε

2 ∫M ∣H ∣2u2+ 1
2ε ∫M ∣Φ∣2u2)

≥ n−p+1
n−p ∫M ∣∇u∣2+A∫M H2u2−B∥Φ∥2

∞ ∫M u2,

where

A = A(n, p,ε) = p(n− p)−(n−2p)
√

p(n− p)
n

ε

2

and

B = B(n, p.ε) = p(n− p)
n

+(n−2p)
√

p(n− p)
n

1
2ε

.

Now we use Lemma 2.5 in the last integral.

C∫
M
∣∇u∣2+D∫

M
H2u2+E∫

∂M
u2 ≤ 0,

where,

C =C(n, p,∥Φ∥∞) = n−p+1
n−p − 4

(n−2)2 B∥Φ∥2
∞

D =D(n, p,∥Φ∥∞) = A−( n
n−2)

2
B∥Φ∥2

∞ and

E = E(n, p,∥Φ∥∞) = κ − 2
(n−2)r2 B∥Φ∥2

∞.

It is clear that we can find a constant c = c(n, p,r,r,κ), such that
if ∥Φ∥∞ ≤ c, then C,D ≥ 0 and E > 0. This implies that u ≡ 0 on ∂M,

8
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and by harmonicity u ≡ 0 in M. Therefore, by the Hodge-de Rham
Theorem, we have that H p is trivial.

Analogously, we can prove thatHp
T (M) = 0. Using the duality

induced by the Hodge star operator, we can extend the proof for
p ≥ ⌊ n

2⌋.

Acknowledgement: The authors would like express their
gratitude to the organizing committee of the event “Meeting on
Geometric Analysis: Celebrating Barnabé Pessoa Lima’s 60th

Birthday" for the opportunity to publish this paper in honor to
Professor B. P. Lima. The authors also thank Professor Levi de
Lima to point us the Yano book.
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space forms

J. Fabio Montenegro† and Franciane B. Vieira

Dedicado ao professor Barnabé Pessoa Lima na ocasião dos seus 60

anos. Esta é a oportunidade ideal para agradecer ao professor Barnabé

por tudo que faz pela matemática, pelos trabalhos de pesquisa que

publicou, pelas gerações de matemáticos que ajudou a formar e, acima

de tudo, pelo caráter bondoso, modesto e determinado que possui, que

certamente o faz merecer todas essas homenagens.

Abstract: Let ϕ ∶ Mm → Nn be a minimal, proper immersion in
an ambient space suitably close to a space form Nn

k of curva-
ture −k ≤ 0. In this paper, we are interested in the relation
between the density function Θ(r) of M and the spectrum of
its Laplace-Beltrami operator. In particular, we prove that if
Θ(r) has subexponential growth (when k < 0) or sub-polynomial
growth (k = 0) along a sequence, then the spectrum of Mm is the
same as that of the space form Nm

k . Notably, the result applies to
Anderson’s (smooth) solutions of Plateau’s problem at infinity on
the hyperbolic space, independently of their boundary regular-
ity. We also give a simple condition on the second fundamental
form that ensures M to have finite density. In particular, we
show that minimal submanifolds with finite total curvature in
the hyperbolic space also have finite density.

†The author is partially supported by CNPq-Brazil 13
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1 Introduction

Let Mm be a minimal, properly immersed submanifold in a com-
plete ambient space Nn. In the present paper, we are interested
in the case when N is close, in a sense made precise below, to a
space form Nn

k of curvature −k ≤ 0. In particular, our focus is the
study of the spectrum of the Laplace Beltrami operator −∆ on M

and its relationship with the density at infinity of M, that is, the
limit as r→+∞ of the (monotone) quantity

Θ(r) ≐ vol(M∩Br)
Vk(r) , (1.1)

where Br indicates a geodesic ball of radius r in Nn and Vk(r) is
the volume of a geodesic ball of radius r in Nm

k . Hereafter, we
will say that M has finite density if

Θ(+∞) ≐ lim
r→+∞

Θ(r) < +∞.

To properly put our results into perspective, we briefly recall
few facts about the spectrum of the Laplacian on a geodesically
complete manifold. It is known by works of P. Chernoff [15] and
R.S. Strichartz [49] that −∆ on a complete manifold is essentially
self-adjoint on the domain C∞

c (M), and thus it admits a unique
self-adjoint extension, which we still call −∆. Since −∆ is positive
and self-adjoint, its spectrum is the set of λ ≥ 0 such that ∆+λ I

does not have bounded inverse. Sometimes we say spectrum of
M rather than spectrum of −∆ and we denote it by σ(M). The
well-known Weyl’s characterization for the spectrum of a self-
adjoint operator in a Hilbert space implies the following

14



Density and Spectrum of Minimal Submanifolds

Lemma 1.1. [19, Lemma 4.1.2] A number λ ∈ R lies in σ(M)
if and only if there exists a sequence of nonzero functions u j ∈
Dom(−∆) such that

∥∆u j +λu j∥2 = o(∥u j∥2) as j→+∞. (1.2)

In the literature, characterizations of the whole σ(M) are
known only in few special cases. Among them, the Euclidean
space, for which σ(Rm) = [0,∞), and the hyperbolic space Hm

k , for
which

σ(Hm
k ) = [(m−1)2k

4
,+∞). (1.3)

The approach to guarantee that σ(M) = [c,+∞), for some c ≥
0, usually splits into two parts. The first one is to show that
infσ(M) ≥ c via, for instance, the Laplacian comparison theo-
rem from below ([42], [5]), and the second one is to produce a
sequence like in lemma 1.1 for each λ > c. This step is accom-
plished by considering radial functions of compact support, and,
at least in the first results on the topic like the one in [21], uses
the comparison theorems on both sides for ∆ρ, ρ being the dis-
tance from a fixed origin o ∈M. Therefore, the method needs both
a pinching on the sectional curvature and the smoothness of ρ,
that is, that o is a pole of M (see [21], [25],[36] and Corollary 2.17
in [8]), which is a severe topological restriction.

The main concern in this paper is to achieve, in the above-
mentioned setting of minimal submanifolds ϕ ∶M→ N, a charac-
terization of the whole σ(M) free from curvature or topological
conditions on M (in this respect, observe that the completeness
of M follows from that of N and the properness of ϕ). It is known
by [18] and [5] that for a minimal immersion ϕ ∶ Mm → Nn

k the
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fundamental tone of M, infσ(M), is at least that of Nm
k , i.e.,

infσ(M) ≥ (m−1)2k
4

. (1.4)

Moreover, as a corollary of [34] and [4], [6], if the second funda-
mental form II satisfies the decay estimate

lim
ρ(x)→+∞

ρ(x)∣II(x)∣ = 0 if k = 0

lim
ρ(x)→+∞

∣II(x)∣ = 0 if k > 0
(1.5)

(ρ(x) being the intrinsic distance with respect to some fixed ori-
gin o ∈M), then M has the same spectrum that a totally geodesic
submanifold Nm

k ⊂Nn
k , that is,

σ(M) = [(m−1)2k
4

,+∞). (1.6)

According to [1], [20], (1.5) is ensured when M has finite total
curvature, that is, when

∫
M
∣II∣m < +∞. (1.7)

Condition (1.5) is a quite binding requirement for (1.6) to
hold, since it needs a pointwise control of the second fundamen-
tal form, and the search for more manageable conditions has
been at the heart of the present paper. Here, we identify a suit-
able growth on the density function Θ(r) along a sequence as a
natural candidate to replace it, see (1.9). As a very special case,
(1.6) holds when M has finite density. It might be interesting
that just a volume growth condition along a sequence could con-
trol the whole spectrum of M; for this to happen, the minimality
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condition enters in a crucial and subtle way.

Regarding the relation between (1.7) and the finiteness of
Θ(+∞), we remark that their interplay has been investigated in
depth for minimal submanifolds of Rn, but the case of Hn

k seems
to be partly unexplored. In the next section, we will briefly dis-
cuss the state of the art, to the best of our knowledge. As a
corollary of Theorem 1.2 below, we will show the following
Corollary 1.1. Let Mm be a minimal properly immersed sub-
manifold in Hn

k . If M has finite total curvature, then Θ(+∞)<+∞.

As far as we know, this result was previously known just in
dimension m = 2 via a Chern-Osserman type inequality, see the
next section for further details.

We now come to our results, beginning with defining the am-
bient spaces which we are interested in: these are manifolds
with a pole, whose radial sectional curvature is suitably pinched
to that of the model Nn

k .
Definition 1.1. Let Nn possess a pole ō and denote with ρ̄ the
distance function from ō. Assume that the radial sectional curva-
ture K̄rad of N, that is, the sectional curvature restricted to planes
π containing ∇̄ρ̄, satisfies

−G(ρ̄(x)) ≤ K̄rad(πx) ≤ −k ≤ 0 ∀x ∈N/{ō}, (1.8)

for some G ∈C0(R+
0 ). We say that

(i) N has a pointwise (respectively, integral) pinching to Rn if
k = 0 and

sG(s) → 0 as s→+∞ (respectively, sG(s) ∈ L1(+∞));
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(ii) N has a pointwise (respectively, integral) pinching to Hn
k if

k > 0 and

G(s)−k→ 0 as s→+∞ (respectively, G(s)−k ∈ L1(+∞)).

Hereafter, given an ambient manifold N with a pole ō, the
density function Θ(r) will always be computed by taking extrin-
sic balls centered at ō.

Our main achievements are the following two theorems. The
first one characterizes σ(M) when the density of M grows subex-
ponentially (respectively, sub-polynomially) along a sequence.
Condition (1.9) below is very much in the spirit of a classical
growth requirement due to R. Brooks [9] and Y. Higuchi [30] to
bound from above the infimum of the essential spectrum of −∆.
However, we stress that our Theorem 1.1 seems to be the first
result in the literature characterizing the whole spectrum of M

under just a mild volume assumption.
Theorem 1.1. Let ϕ ∶Mm → Nn be a minimal properly immersed
submanifold, and suppose that N has a pointwise or an integral
pinching to a space form. If either

N is pinched to Hn
k , and liminf

s→+∞

logΘ(s)
s

= 0, or

N is pinched to Rn, and liminf
s→+∞

logΘ(s)
logs

= 0.
(1.9)

then

σ(M) = [(m−1)2k
4

,+∞). (1.10)

The above theorem is well suited for minimal submanifolds
constructed via Geometric Measure Theory since, typically, their
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existence is guaranteed by controlling the density function Θ(r).
As an important example, Theorem 1.1 applies to all solutions
of Plateau’s problem at infinity Mm →Hn

k constructed in [2], pro-
vided that they are smooth. Indeed, because of their construc-
tion, Θ(+∞)<+∞ (see [2], part [A] at p. 485) and they are proper
(it can also be deduced as a consequence of Θ(+∞) < +∞). By
standard regularity theory, smoothness of Mm is automatic if
m ≤ 6.
Corollary 1.2. Let Σ ⊂ ∂∞Hn

k be a closed, integral (m−1) current
in the boundary at infinity of Hn

k such that, for some neighbour-
hood U ⊂Hn

k of supp(Σ), Σ does not bound in U , and let Mm ↪Hn
k

be the solution of Plateau’s problem at infinity constructed in [2]
for Σ. If M is smooth, then (1.10) holds.

An interesting fact of Corollary 1.2 is that M is not required
to be regular up to ∂∞Hn

k , in particular it might have infinite
total curvature. In this respect, we observe that if M be C2 up
to ∂∞Hn

k , then M would have finite total curvature (Lemma 5 in
Appendix 1 [38]). By deep regularity results, this is the case
if, for instance, Mm →Hm+1

k is a smooth hypersurface that solves
Plateau’s problem for Σ, and Σ is a C2,α (for α > 0), embedded
compact hypersurface of ∂∞Hn

k . See Appendix 1 for details.

The spectrum of solutions of Plateau’s problems has also
been considered in [3] for minimal surfaces in R3. In this re-
spect, it is interesting to compare Corollary 1.2 with (3) of Corol-
lary 2.6 therein.

In our second result we focus on the particular case when
Θ(+∞) < +∞, and we give a sufficient condition for its validity
in terms of the decay of the second fundamental form. Towards
this aim, we shall restrict to ambient spaces with an integral
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pinching.
Theorem 1.2. Let ϕ ∶ Mm → Nn be a minimal immersion, and
suppose that N has an integral pinching to a space form. Denote
with ρ(x) the intrinsic distance from some reference origin o ∈
M. Assume that there exist c > 0 and α > 1 such that the second
fundamental form satisfies, for ρ(x) >> 1,

∣II(x)∣2 ≤ c
ρ(x) logα

ρ(x) if N is pinched to Hn
k ;

∣II(x)∣2 ≤ c
ρ(x)2 logα

ρ(x) if N is pinched to Rn.
(1.11)

Then, ϕ is proper, M is diffeomorphic to the interior of a compact
manifold with boundary, and Θ(+∞) < +∞.

2 Preliminaries

Let ϕ ∶ (Mm,⟨ , ⟩) → (Nn,( , )) be an isometric immersion of a com-
plete m-dimensional Riemannian manifold M into an ambient
manifold N of dimension n and possessing a pole ō. We denote
with ∇,Hess ,∆ the connection, the Riemannian Hessian and the
Laplace-Beltrami operator on M, while quantities related to N

will be marked with a bar. For instance, ∇̄,dist,Hess will identify
the connection, the distance function and the Hessian in N. Let
ρ̄(x) = dist(x, ō) be the distance function from ō. Geodesic balls in
N of radius R and center y will be denoted with BN

R(y). Moreover,
set r ∶ M→R, r(x) = ρ̄(ϕ(x)), for the extrinsic distance from ō. We
will indicate with Γs the extrinsic geodesic spheres restricted to
M: Γs ≐ {x ∈M; r(x) = s}. Fix a base point o ∈M. In what follows, we
shall also consider the intrinsic distance function ρ(x) = dist(x,o)
from a reference origin o ∈M.
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2.1 Target spaces

Hereafter, we consider an ambient space N possessing a pole ō

and, setting ρ̄(x) ≐ dist(x, ō), we assume that (1.8) is met for some
k ≥ 0 and some G ∈C0(R+

0 ). Let snk(t) be the solution of

⎧⎪⎪⎨⎪⎪⎩

sn′′k −ksnk = 0 on R+,

snk(0) = 0, sn′k(0) = 1,
(2.1)

that is

snk(t) =
⎧⎪⎪⎨⎪⎪⎩

t if k = 0,

sinh(
√

kt)/
√

k if k > 0.
(2.2)

Observe that Rn and Hn
k can be written as the differentiable man-

ifold Rn equipped with the metric given, in polar geodesic coor-
dinates (ρ,θ) ∈R+×Sn−1 centered at some origin, by

ds2
k = dρ

2+ sn2
k(ρ)dθ

2,

dθ
2 being the metric on the unit sphere Sn−1.

We also consider the model Mn
g associated with the lower bound

−G for K̄rad, that is, we let g ∈C2(R+
0 ) be the solution of

⎧⎪⎪⎨⎪⎪⎩

g′′−Gg = 0 on R+,

g(0) = 0, g′(0) = 1,
(2.3)

and we define Mn
g as being (Rn,ds2

g) with the C2-metric ds2
g = dρ

2+
g2(ρ)dθ

2 in polar coordinates. Condition (1.8) and the Hessian
comparison theorem (Theorem 2.3 in [45], or Theorem 1.15 in
[8]) imply

sn′k(ρ̄)
snk(ρ̄)(( , )−dρ̄⊗dρ̄) ≤Hess(ρ̄) ≤ g′(ρ̄)

g(ρ̄) (( , )−dρ̄⊗dρ̄). (2.4)

21



J. F. Montenegro and F. B. Vieira

The next proposition investigates the ODE properties that fol-
low from the assumptions of pointwise or integral pinching.

Proposition 2.1. Let Nn satisfy (1.8), and let snk,g be solutions
of (2.2), (2.3). Define

ζ(s) ≐ g′(s)
g(s) −

sn′k(s)
snk(s) . (2.5)

Then, ζ(0+) = 0, ζ ≥ 0 on R+. Moreover,

(i) If N has a pointwise pinching to Hn
k or Rn, then ζ(s) → 0 as

s→+∞.

(ii) If N has an integral pinching to Hn
k or Rn, then g/snk →C as

s→+∞ for some C ∈R+, and

ζ(s) ∈ L1(R+), ζ(s)snk(s)
sn′k(s) → 0 as s→+∞. (2.6)

2.2 A transversality lemma

This subsection is devoted to an estimate of the measure of the
critical set

St,s = {x ∈M ∶ t ≤ r(x) ≤ s, ∣∇r(x)∣ = 0},

with the purpose of justifying some coarea’s formulas for inte-
grals over extrinsic annuli. We begin with the next

Lemma 2.1. Let ϕ ∶Mm→ Nn be an isometric immersion, and let
r(x) = dist(ϕ(x), ō) be the extrinsic distance function from ō ∈ N.
Denote with Γσ ≐ {x ∈M; r(x) =σ}. Then, for each f ∈ L1({t ≤ r ≤ s}),
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∫
{t≤r≤s}

f dx = ∫
St,s

f dx+∫
s

t
[∫

Γσ

f
∣∇r∣ ]dσ . (2.7)

In particular, if
vol(St,s) = 0, (2.8)

then

∫
{t≤r≤s}

f dx = ∫
s

t
[∫

Γσ

f
∣∇r∣ ]dσ . (2.9)

Let now N possess a pole ō and satisfy (1.8), and consider a
minimal immersion ϕ ∶ M → N. Since, by the Hessian compari-
son theorem, geodesic spheres in N centered at ō are positively
curved, it is reasonable to expect that the “transversality" con-
dition (2.8) holds. This is the content of the next
Proposition 2.2. Let ϕ ∶Mm→Nn be a minimal immersion, where
N possesses a pole ō and satisfies (1.8). Then,

vol(S0,+∞) = 0. (2.10)

3 Monotonicity formulae and conditions
equivalent to Θ(+∞) < +∞

Our first step is to improve the classical monotonicity formula
for Θ(r), that can be found in [48] (for N =Rn) and [2] (for N =Hn

k).
For k ≥ 0, let vk,Vk denote the volume function, respectively, of
geodesic spheres and balls in the space form of sectional curva-
ture −k and dimension m, i.e.,

vk(s) =ωm−1snk(s)m−1, Vk(s) = ∫
s

0
vk(σ)dσ , (3.1)

where ωm−1 is the volume of the unit sphere Sm−1. Although we
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shall not use all the four monotone quantities in (3.3) below, nev-
ertheless they have independent interest, and for this reason we
state the result in its full strength. We define the flux J(s) of ∇r

over the extrinsic sphere Γs:

J(s) ≐ 1
vk(s) ∫Γs

∣∇r∣. (3.2)

Proposition 3.1 (The monotonicity formulae). Suppose that N

has a pole ō and satisfies (1.8), and let ϕ ∶ Mm → Nn be a proper
minimal immersion. Then, the functions

Θ(s), 1
Vk(s) ∫{0≤r≤s}

∣∇r∣2 (3.3)

are absolutely continuous and monotone non-decreasing. More-
over, J(s) coincides, on an open set of full measure, with the ab-
solutely continuous function

J̄(s) ≐ 1
vk(s) ∫{r≤s}

∆r

and J̄(s), Vk(s)[J̄(s) −Θ(s)] are non-decreasing. In particular,
J(s) ≥Θ(s) a.e. on R+.

Proof. We first observe that, in view of Lemma 2.1 and Proposi-
tion 2.2 applied with f = ∆r,

vk(s)J̄(s) ≐ ∫
{r≤s}

∆r ≡ ∫
s

0
[∫

Γσ

∆r
∣∇r∣ ]dσ (3.4)

is absolutely continuous, and by the divergence theorem it coin-
cides with vk(s)J(s) whenever s is a regular value of r. Consider

f (s) = ∫
s

0

Vk(σ)
vk(σ)dσ = ∫

s

0

1
vk(σ) [∫

σ

0
vk(τ)dτ]dσ (3.5)
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which is a C2 solution of

f ′′+(m−1)sn′k
snk

f ′ = 1 on R+, f (0) = 0, f ′(0) = 0,

and define ψ(x) = f (r(x)) ∈C2(M). Let {ei} be a local orthonormal
frame on M. Since ϕ is minimal, by the chain rule and the lower
bound in the Hessian comparison theorem 2.4

∆r =
m

∑
j=1

Hess(ρ̄)(dϕ(e j),dϕ(e j)) ≥
sn′k(r)
snk(r)

(m−∣∇r∣2). (3.6)

We then compute

∆ψ = f ′′∣∇r∣2+ f ′∆r ≥ f ′′∣∇r∣2+ f ′
sn′k
snk

(m−∣∇r∣2)

= 1+(1−∣∇r∣2)( f ′(r)sn′k(r)
snk(r) − f ′′(r)) .

(3.7)

It is not hard to show that the function

z(s) ≐ f ′(s)sn′k(s)
snk(s) − f ′′(s) = m

m−1
Vk(s)v′k(s)

v2
k(s)

−1.

is non-negative and non-decreasing on R+. Indeed, from

z(0) = 0, z′(s) = m
vk(s) [kVk(s)− 1

m−1
v′k(s)z(s)] (3.8)

we deduce that z′ > 0 when z < 0, which proves that z ≥ 0 on R+.
Fix 0 < t < s regular values for r. Integrating (3.7) on the smooth
compact set {t ≤ r ≤ s} and using the divergence theorem we de-
duce

Vk(s)
vk(s) ∫Γs

∣∇r∣−Vk(t)
vk(t) ∫Γt

∣∇r∣ ≥ vol({t ≤ r ≤ s}). (3.9)
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By the definition of J(s) and Θ(s), and since J(s) ≡ J̄(s) for regular
values, the above inequality rewrites as follows:

Vk(s)J̄(s)−Vk(t)J̄(t) ≥Vk(s)Θ(s)−Vk(t)Θ(t),

or in other words,

Vk(s)[J̄(s)−Θ(s)] ≥Vk(t)[J̄(t)−Θ(t)].

Since all the quantities involved are continuous, the above
relation extends to all t,s ∈R+, which proves the monotonicity of
Vk[J̄ −Θ]. Letting t → 0 we then deduce that J̄(s) ≥ Θ(s) on R+.
Next, by using f ≡ 1 and f ≡ ∣∇r∣2 in Lemma 2.1 and exploiting
again Proposition 2.2 we get

vol({t ≤ r ≤ s}) =∫
s

t
[∫

Γσ

1
∣∇r∣ ]dσ , ∫

{0≤r≤s}
∣∇r∣2 =∫

s

0
[∫

Γσ

∣∇r∣]dσ ,

(3.10)
showing that the two quantities in (3.3) are absolutely contin-
uous. Plugging into (3.9), letting t → 0 and using that z ≥ 0 we
deduce

Vk(s)
vk(s) ∫Γs

∣∇r∣ ≥ ∫
s

0
[∫

Γσ

1
∣∇r∣ ]dσ , (3.11)

for regular s, which together with the trivial inequality ∣∇r∣−1 ≥
∣∇r∣ and with (3.10) gives

Vk(s)∫
Γs
∣∇r∣ ≥ vk(s)∫

s

0
[∫

Γσ

∣∇r∣]dσ ,

Vk(s)[ d
ds

vol({r ≤ s})] ≥ vk(s)vol({r ≤ s}).
(3.12)

Integrating the second inequality we obtain the monotonicity
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of Θ(s), while integrating the first one and using (3.10) we ob-
tain the monotonicity of the second quantity in (3.3). To show
the monotonicity of J̄(s), by (3.6) and using the full information
coming from (2.4) we obtain

sn′k(r)
snk(r)

(m−∣∇r∣2) ≤ ∆r ≤ g′(r)
g(r)

(m−∣∇r∣2). (3.13)

In view of the identity (3.4), we consider regular s > 0, we divide
(3.13) by ∣∇r∣ and integrate on Γs to get

sn′k(s)
snk(s) ∫Γs

m−∣∇r∣2
∣∇r∣ ≤ (vk(s)J̄(s))′ ≤ g′(s)

g(s) ∫Γs

m−∣∇r∣2
∣∇r∣ . (3.14)

Writing m−∣∇r∣2 =m(1−∣∇r∣2)+(m−1)∣∇r∣2, and setting for conve-
nience

vg(s) =ωm−1g(s)m−1, T(s) ≐ ∫Γs
∣∇r∣−1

∫Γs
∣∇r∣ −1, (3.15)

rearranging we deduce the two inequalities

(vk(s)J̄(s))′ ≥ v′k(s)J̄(s)+m
sn′k(s)
snk(s)T(s)vk(s)J̄(s)

(vk(s)J̄(s))′ ≤
v′g(s)
vg(s)vk(s)J̄(s)+m

g′(s)
g(s) T(s)vk(s)J̄(s).

(3.16)

Expanding the derivative on the left-hand side, we deduce

J̄′(s) ≥ m
sn′k(s)
snk(s)T(s)J̄(s),

(vk(s)
vg(s) J̄(s))

′

≤ m
g′(s)
g(s) T(s)(vk(s)

vg(s) J̄(s)) .
(3.17)
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The first inequality together with the non-negativity of T im-
plies the desired J̄′ ≥ 0, concluding the proof. The second inequal-
ity in (3.17), on the other hand, will be useful in awhile.

We next investigate conditions equivalent to the finiteness
of the density.
Proposition 3.2. Suppose that N has a pole and satisfies (1.8).
Let ϕ ∶ Mm → Nn be a proper minimal immersion. Then, the fol-
lowing properties are equivalent:

(1) Θ(+∞) < +∞;

(2) J̄(+∞) < +∞.

Moreover, both (1) and (2) imply that

sn′k(s)
snk(s)

⎡⎢⎢⎢⎣
∫Γs

∣∇r∣−1

∫Γs
∣∇r∣ −1

⎤⎥⎥⎥⎦
∈ L1(R+). (3)

If further N has an integral pinching to Rn or Hn
k , then (1) ⇔

(2)⇔ (3).

4 Proof of Theorem 1

Let Mm be a minimal properly immersed submanifold in Nn, and
suppose that N has a pointwise or integral pinching to a space
form. Because of the upper bound in (1.8), by [18] and [5] the
bottom of σ(M) satisfies

infσ(M) ≥ (m−1)2k
4

. (4.1)

Briefly, the lower bound in (3.13) implies

∆r ≥ (m−1)sn′k(r)
snk(r) ≥ (m−1)

√
k on M.
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Integrating on a relatively compact, smooth open set Ω and
using the divergence theorem and ∣∇r∣ ≤ 1, we deduceHm−1(∂Ω) ≥
(m−1)

√
kvol(Ω). The desired (4.1) then follows from Cheeger’s

inequality:

infσ(M) ≥ 1
4
( inf

Ω⋐M

Hm−1(∂Ω)
vol(Ω) )

2

≥ (m−1)2k
4

.

To complete the proof of the theorem, since σ(M) is closed it is
sufficient to show that each λ > (m−1)2k/4 lies in σ(M).

Set for convenience β ≐
√

λ −(m−1)2k/4 and, for 0 ≤ t < s, let
At,s denote the extrinsic annulus

At,s ≐ {x ∈M ∶ r(x) ∈ [t,s]}.

Define the weighted measure dµk ≐ vk(r)−1dx on {r ≥1}. Hereafter,
we will always restrict to this set. Consider

ψ(s) ≐ eiβ s
√

vk(s)
, which solves ψ

′′+ψ
′ v
′
k

vk
+λψ = a(s)ψ, (4.2)

where

a(s) ≐ (m−1)2k
4

+ 1
4
(v′k(s)

vk(s))
2

− 1
2

v′′k (s)
vk(s) → 0 (4.3)

as s→+∞. For technical reasons, fix R > 1 large such that Θ(R) >
0. Fix t,s,S such that

R+1 < t < s < S−1,

and let η ∈C∞
c (R) be a cut-off function satisfying

0 ≤ η ≤ 1, η ≡ 0 outside of (t −1,S), η ≡ 1 on (t,s),
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∣η ′∣+ ∣η ′′∣ ≤C0 on [t −1,s], ∣η ′∣+ ∣η ′′∣ ≤ C0
S−s on [s,S]

for some absolute constant C0 (the last relation is possible since
S−s ≥ 1). The value S will be chosen later in dependence of s. Set
ut,s ≐ η(r)ψ(r) ∈C∞

c (M). Then, by (4.2),

∆ut,s+λut,s = (η
′′

ψ +2η
′
ψ
′+ηψ

′′)∣∇r∣2+(η
′
ψ +ηψ

′)∆r+ληψ

= (η
′′

ψ +2η
′
ψ
′− v′k

vk
ηψ

′−ληψ +aηψ)(∣∇r∣2−1)+aηψ

+(η
′
ψ +ηψ

′)(∆r− v′k
vk

)+(η
′′

ψ +2η
′
ψ
′+η

′
ψ

v′k
vk

) .

Using that there exists an absolute constant c for which ∣ψ ∣ +
∣ψ ′∣ ≤ c/√vk, the following inequality holds:

∥∆ut,s+λut,s∥2
2 ≤ C

⎛
⎝∫At−1,S

⎡⎢⎢⎢⎢⎣
(1−∣∇r∣2)2+(∆r− v′k

vk
)

2

+a(r)2
⎤⎥⎥⎥⎥⎦

dµk

+µk(As,S)
(S− s)2 +µk(At−1,t)) ,

for some suitable C depending on c,C0. Since ∥ut,s∥2
2 ≥ µk(At,s) and

(1−∣∇r∣2)2 ≤ 1−∣∇r∣2, we obtain

∥∆ut,s+λut,s∥2
2

∥ut,s∥2
2

≤
⎛
⎝

C
µk(At,s) ∫At−1,S

⎡⎢⎢⎢⎢⎣
1−∣∇r∣2+(∆r− v′k

vk
)

2

+a(r)2
⎤⎥⎥⎥⎥⎦

dµk

+ 1
(S− s)2

µk(As,S)
µk(At,s)

+ µk(At−1,t)
µk(At,s)

)

(4.4)

Next, using (2.4),
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∆r =
m

∑
j=1

Hess(ρ̄)(ei,ei) =
v′k(r)
vk(r) +

sn′k(r)
snk(r)(1−∣∇r∣2)+P(x),

where, by Proposition 2.1,

0 ≤ P(x) ≐
m

∑
j=1

Hess(ρ̄)(ei,ei)−
sn′k(r)
snk(r)(m−∣∇r∣2)

≤ (g′(r)
g(r) −

sn′k(r)
snk(r))(m−∣∇r∣2)

= ζ(r)(m−∣∇r∣2) ≤mζ(r).

(4.5)

We thus obtain, on the set {r ≥ 1},

(∆r− v′k
vk

)
2

+1−∣∇r∣2+a(r)2 ≤ [sn′k(r)
snk(r)(1−∣∇r∣2)+mζ(r)]

2

+1−∣∇r∣2+a(r)2

≤ C(ζ(r)2+1−∣∇r∣2+a(r)2)
(4.6)

for some absolute constant C. Note that, in both our pointwise or
integral pinching assumptions on N, by Proposition 2.1 it holds
ζ(s) → 0 as s→+∞. Set

F(t) ≐ sup
σ∈[t−1,+∞)

[a(σ)2+ζ(σ)2],

and note that F(t)→ 0 monotonically as t→+∞. Integrating (4.6)
we get the existence of C > 0 independent of s,t such that

∫
At−1,S

⎡⎢⎢⎢⎢⎣
(∆r− v′k

vk
)

2

+1−∣∇r∣2+a(r)2
⎤⎥⎥⎥⎥⎦

dµk

≤C(F(t)∫
At−1,S

1
vk(r) +∫At−1,S

1−∣∇r∣2
vk(r) ) .

(4.7)
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Using the coarea’s formula and the transversality lemma, for
each 0 ≤ a < b

µk(Aa,b) =∫
Aa,b

1
vk(r) =∫

b

a
J[1+T ], ∫

Aa,b

1−∣∇r∣2
vk(r) =∫

b

a
JT, (4.8)

where J and T are defined, respectively, in (3.2) and (3.15). Sum-
marizing, in view of (4.7) and (4.8) we deduce from (4.4) the fol-
lowing inequalities:

∥∆ut,s+λut,s∥2
2

∥ut,s∥2
2

≤ C
⎛
⎝

1

∫ s
t J[1+T ]

[F(t)∫
S

t−1
J[1+T ]+∫

S

t−1
JT]

+ ∫ S
s J[1+T ]

(S− s)2 ∫ s
t J[1+T ]

+ ∫
t

t−1 J[1+T ]

∫ s
t J[1+T ]

⎞
⎠
≐Q(t,s).

(4.9)
If we can guarantee that

liminf
t→+∞

liminf
s→+∞

∥∆ut,s+λut,s∥2
2

∥ut,s∥2
2

= 0, (4.10)

then we are able to construct a sequence of approximating eigen-
functions for λ as follows: fix ε > 0. By (4.10) there exists a di-
vergent sequence {ti} such that, for i ≥ iε ,

liminf
s→+∞

∥∆uti,s+λuti,s∥2
2

∥uti,s∥2
2

< ε/2.

For i = iε , pick then a sequence {s j} realizing the liminf. For
j ≥ jε(iε ,ε)

∥∆uti,s j +λuti,s j∥2
2 < ε∥uti,s j∥2

2, (4.11)

Writing uε ≐ utiε ,s jε
, by (4.11) from the set {uε} we can extract a

sequence of approximating eigenfunctions for λ , concluding the
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proof that λ ∈σ(M). To show (4.10), by (4.9) it is enough to prove
that

liminf
t→+∞

liminf
s→+∞

Q(t,s) = 0. (4.12)

Suppose, by contradiction, that (4.12) were not true. Then, there
exists a constant δ > 0 such that, for each t ≥ tδ , liminfs→+∞Q(t,s) ≥
2δ , and thus for t ≥ tδ and s ≥ sδ (t)

δ ∫
s

t
J[1+T ] ≤ F(t)∫

S

t−1
J[1+T ]+∫

S

t−1
JT +∫

S

s

J[1+T ]
(S− s)2

+∫
t

t−1
J[1+T ], (4.13)

and rearranging

δ ∫
s

t
J[1+T ] ≤ (F(t)+1)∫

S

t−1
J[1+T ]−∫

S

t−1
J+∫

S

s

J[1+T ]
(S− s)2

+∫
t

t−1
J[1+T ]. (4.14)

We rewrite the above integrals in order to make Θ(s) appear.
Integrating by parts and using again the coarea’s formula and
the transversality lemma,

∫
b

a
J[1+T ] = ∫

Aa,b

1
vk(r) = ∫

b

a

1
vk(σ) [∫

Γσ

1
∣∇r∣ ]dσ

= ∫
b

a

(Vk(σ)Θ(σ))′

vk(σ) dσ

= Vk(b)
vk(b)Θ(b)−Vk(a)

vk(a)Θ(a)+∫
b

a

Vkv′k
v2

k
Θ.

(4.15)

To deal with the term containing the integral of J alone in (4.14),
we use the inequality J(s) ≥ Θ(s) coming from the monotonicity
formulae in Proposition 3.1. This passage is crucial for us to
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conclude. Inserting (4.15) and J ≥Θ into (4.14) we get

(F(t)+1)(Vk(S)
vk(S)Θ(S)−Vk(t −1)

vk(t −1)Θ(t −1)+∫
S

t−1

Vkv′k
v2

k
Θ)

−∫
S

t−1
Θ+ 1

(S− s)2 [Vk(S)
vk(S)Θ(S)−Vk(s)

vk(s)Θ(s)+∫
S

s

Vkv′k
v2

k
Θ]

+Vk(t)
vk(t)Θ(t)−Vk(t −1)

vk(t −1)Θ(t −1)+∫
t

t−1

Vkv′k
v2

k
Θ

≥ δ
Vk(s)
vk(s)Θ(s)−δ

Vk(t)
vk(t)Θ(t)+δ ∫

s

t

Vkv′k
v2

k
Θ.

(4.16)

The idea to reach the desired contradiction is to prove that, as a
consequence of (4.16),

∫
S

t−1
Θ (4.17)

(hence, Θ(S)) must grow faster as S → +∞ than the bound in
(1.9). To do so, we need to simplify (4.16) in order to find a suit-
able differential inequality for (4.17).
We first observe that, both for k > 0 and for k = 0, there exists an
absolute constant ĉ such that ĉ−1 ≤ Vkv′k/v2

k ≤ ĉ on [1,+∞). Fur-
thermore, by the monotonicity of Θ,

∫
S

s

Vkv′k
v2

k
Θ ≤ ĉ(S− s)Θ(S). (4.18)

Next, we deal with the two terms in the left-hand side of (4.16)
that involve (4.17):

(F(t)+1)∫
S

t−1

Vkv′k
v2

k
Θ−∫

S

t−1
Θ = F(t)∫

S

t−1

Vkv′k
v2

k
Θ+∫

S

t−1

Vkv′k −v2
k

v2
k

Θ

≤ ĉF(t)∫
S

t−1
Θ+∫

S

t−1

Vkv′k −v2
k

v2
k

Θ.
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The key point is the following relation:

Vk(s)v′k(s)−vk(s)2

vk(s)2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

= −1/m if k = 0;

→ 0 as s→+∞, if k > 0.
(4.19)

Define

ω(t) ≐ sup
[t−1,+∞)

Vkv′k −v2
k

v2
k

, χ(t) ≐ ĉF(t)+ω(t).

Again by the monotonicity of Θ,

(F(t)+1)∫
S

t−1

Vkv′k
v2

k
Θ−∫

S

t−1
Θ ≤ [ĉF(t)+ω(t)]∫

S

t−1
Θ

= χ(t)∫
S

t−1
Θ

≤ χ(t)Θ(t)+χ(t)∫
S

t
Θ.

(4.20)

For simplicity, hereafter we collect all the terms independent of
s in a function that we call h(t), which may vary from line to line.
Inserting (4.18) and (4.20) into (4.16) we infer

[(F(t)+1+ 1
(S− s)2 )

Vk(S)
vk(S) +

ĉ
S− s

]Θ(S)+χ(t)∫
S

t
Θ

≥ h(t)+(δ + 1
(S− s)2 )

Vk(s)
vk(s)Θ(s)+δ ĉ−1∫

s

t
Θ.

(4.21)

Summing δ ĉ−1(S−s)Θ(S) to the two sides of the above inequality,
using the monotonicity of Θ and getting rid of the term contain-
ing Θ(s) we obtain
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[(F(t)+1+ 1
(S− s)2 )

Vk(S)
vk(S) +

ĉ
S− s

+δ ĉ−1(S− s)]Θ(S)+χ(t)∫
S

t
Θ

≥ h(t)+δ ĉ−1∫
S

t
Θ.

(4.22)

Using (4.19), the definition of χ(t) and the properties of ω(t),
F(t), we can choose tδ sufficiently large to guarantee that

δ ĉ−1−χ(t) ≥ ck ≐
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
m +

δ ĉ−1

2 if k = 0,

δ ĉ−1

2 if k > 0,
(4.23)

hence

[(F(t)+1+ 1
(S− s)2 )

Vk(S)
vk(S) +

ĉ
S− s

+δ ĉ−1(S− s)]Θ(S) ≥ h(t)+ck∫
S

t
Θ.

(4.24)
We now specify S(s) depending on whether k > 0 or k = 0.

The case k > 0.
We choose S ≐ s+1. In view of the fact that Vk/vk is bounded above
on R+, (4.24) becomes

c̄Θ(s+1) ≥ h(t)+ck∫
s+1

t
Θ ≥ ck

2 ∫
s+1

t
Θ, (4.25)

for some c̄ independent of t,s. Note that the last inequality is
satisfied provided s ≥ sδ (t) is chosen to be sufficiently large, since
the monotonicity of Θ implies that Θ /∈ L1(R+). Integrating and
using again the monotonicity of Θ, we get

(s+1− t)Θ(s+1) ≥ ∫
s+1

t
Θ ≥ [∫

s0+1

t
Θ]exp{ ck

2c̄
(s− s0)} ,

hence Θ(s) grows exponentially. Ultimately, this contradicts our
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assumption (1.9).

The case k = 0.
We choose S ≐ s+√

s. Since Vk(S)/vk(S) = S/m, from (4.24) we infer

[(F(t)+1+ 1
s
) S

m
+ ĉ√

s
+δ ĉ−1√s]Θ(S) ≥ h(t)+ck∫

S

t
Θ. (4.26)

Using the expression of ck and the fact that F(t)→ 0, up to choos-
ing tδ and then sδ (t) large enough we can ensure the validity of
the following inequality:

[(F(t)+1+ 1
s
) S

m
+ ĉ√

s
+δ ĉ−1√s] < [ 1

m
+ δ ĉ−1

4
]S = [ck −

δ ĉ−1

4
]S

for t ≥ tδ and s ≥ sδ (t). Plugging into (4.24), and using that Θ /∈
L1(R+),

SΘ(S) ≥ h(t)+ ck

ck −δ ĉ−1/4 ∫
S

t
Θ ≥ (1+ε)∫

S

t
Θ,

for a suitable ε > 0 independent of t,S, and provided that S ≥ sδ (t)
is large enough. Integrating and using again the monotonicity
of Θ,

SΘ(S) ≥ (S− t)Θ(S) ≥ ∫
S

t
Θ ≥ [∫

S0

t
Θ]( S

S0
)

1+ε

,

hence Θ(S) grows polynomially at least with power ε, contra-
dicting (1.9).
Concluding, both for k > 0 and for k = 0 assuming (4.13) leads to
a contradiction with our assumption (1.9), hence (4.10) holds, as
required.
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5 Proof of Theorem 2

We first show that ϕ is proper and that M is diffeomorphic to the
interior of a compact manifold with boundary. Both the proper-
ties are consequence of the following lemma due to [6], which
improves on [1], [20], [10], [4].

Lemma 5.1. Let ϕ ∶ Mm → Nn be an immersed submanifold into
an ambient manifold N with a pole and suppose that N satisfies
(1.8) for some k ≥ 0. Denote by Bs = {x ∈ M; ρ(x) ≤ s} the intrinsic
ball on M. Assume that

(i) limsup
s→+∞

s∥II∥L∞(∂Bs) < 1 if k = 0 in (1.8), or

(ii) limsup
s→+∞

∥II∥L∞(∂Bs) <
√

k if k > 0 in (1.8).
(5.1)

Then, ϕ is proper and there exists R > 0 such that ∣∇r∣ > 0 on
{r ≥ R}, where r is the extrinsic distance function. Consequently,
the flow

Φ ∶R+×{r = R}→ {r ≥ R}, d
ds

Φs(x) = ∇r
∣∇r∣2

(Φs(x)) (5.2)

is well defined, and M is diffeomorphic to the interior of a com-
pact manifold with boundary.

The properness of ϕ enables us to apply Proposition 3.2.
Therefore, to show that Θ(+∞) < +∞ it is enough to check that

sn′k(s)
snk(s)

∫Γs
[∣∇r∣−1−∣∇r∣]
∫Γs

∣∇r∣ ∈ L1(+∞). (5.3)

To achieve (5.3), we need to bound from above the rate of
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approaching of ∣∇r∣ to 1 along the flow Φ in Lemma 5.1. We
begin with the following
Lemma 5.2. Suppose that N has a pole and radial sectional cur-
vature satisfying (1.8), and that ϕ ∶Mm→Nn is a proper minimal
immersion such that ∣∇r∣ > 0 outside of some compact set {r ≤ R}.
Let Φ denote the flow of ∇r/∣∇r∣2 as in (5.2) and let γ ∶ [R,+∞)→M

be a flow line starting from some x0 ∈ {r = R}. Then, along γ,

d
ds

(snk(r)
√

1−∣∇r∣2) ≤ snk(r)∣II(γ(s))∣ (5.4)

The above lemma relates the behaviour of ∣∇r∣ to that of the
second fundamental form. The next result makes this relation
explicit in the two cases considered in Theorem 1.2.
Proposition 5.1. In the assumptions of the above proposition,
suppose further that either

(i) ∥II∥L∞(∂Bs) ≤
C

s logα/2 s
if k = 0 in (1.8), or

(ii) ∥II∥L∞(∂Bs) ≤
C

√
s logα/2 s

if k > 0 in (1.8).
(5.5)

for s ≥ 1 and some constants C > 0 and α > 0. Here, ∂Bs is the
boundary of the intrinsic ball Bs(o). Then, ∣∇r∣(γ(s)) → 1 as s

diverges, and if s > 2R and R is sufficiently large,

in the case (i), 1−∣∇r(γ(s))∣2 ≤ Ĉ
logα s

in the case (ii), 1−∣∇r(γ(s))∣2 ≤ Ĉ
s logα s

(5.6)

for some constant Ĉ depending on R.

We are now ready to conclude the proof of Theorem 1.2 by
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showing that M has finite density or, equivalently, that (5.3)
holds.

Let η(s) be either

1
logα s

when k = 0, or
1

s logα s
when k > 0, (5.7)

where α > 1 and C is a large constant. In our assumptions, we
can apply Lemma 5.2 and Proposition 5.1 to deduce, according
to (5.6), that, for large enough R,

1−∣∇r(γ(s))∣2 ≤Cη(s) on (R,+∞),

where γ(s) is a flow curve of Φ in (5.2) and C =C(R) is a large
constant. In particular, ∣∇r(γ(s))∣ → 1 as s→ +∞. We therefore
deduce the existence of a constant C2(R) > 0 such that

sn′k(s)
snk(s)

∫Γs
[∣∇r∣−1−∣∇r∣]
∫Γs

∣∇r∣ ≤C
sn′k(s)
snk(s)η(s)∫Γs

∣∇r∣−1

∫Γs
∣∇r∣ ≤C2

sn′k(s)
snk(s)η(s).

In both our cases k = 0 and k > 0, since α > 1 it is immediate to
check that sn′kη/snk ∈ L1(+∞), proving (5.3).
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1 Minimal Surfaces

In 1760, Lagrange [1] proposed the following problem: Given
a closed curve C (without self-intersections), find the minimum
area surface that has this curve as boundary. Lagrange pre-
sented this problem as a mere example of a method he developed
to find curves or surfaces that would minimize certain amounts
such as area, length, energy, etc. These methods today consti-
tute the so-called Calculus of Variations.

Applying the method developed by Lagrange, we conclude
that if there exists a surface S of minimum area with bound-
ary C, then H = 0 (where H denotes the mean curvature of S).
Therefore, the minimal area surfaces are the minimal surfaces,
that is, the surfaces whose mean curvature is zero at all points
(H = 0). However, Lagrange gave no examples of minimal sur-
faces except the trivial example of the plane.

†The author is partially supported by CNPq-Brazil 49
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In fact, to find examples of surfaces with H = 0 is not, in
principle, an easy task. Even for the simplest case of surfaces
that are graphs z = f (x,y) of differentiable functions (which was
the case treated by Lagrange). In this case, the condition H = 0

is equivalent to the equation

(1+ f 2
y ) fxx+2 fx fy fxy+(1+ f 2

x ) fyy = 0. (1.1)

The linear functions f (x,y) = ax+by+c, where a, b, c ∈R, are solu-
tions of this equation.

We note that the definition of mean curvature was not known
in Lagrange time. In fact, the main curvatures λ1 and λ2 were
still not defined, which were introduced by Euler in a paper pub-
lished in the same year as Lagrange’s work. What Lagrange
did was to use the method of variations for surfaces in the form
z = f (x,y) and to obtain that the equation (1.1) was a necessary
condition for a surface to have minimum area.

Sixteen years after Lagrange obtained the equation (1.1),
Meusnier [2] showed that it was equivalent to the fact that λ1+
λ2 = 0, and obtained two nontrivial solutions of this equation.
Namely: the catenoid, the only minimal surface area of rotation,
unless translations and dilations; The helicoid, the only (except
the plane) minimal ruled surface.

For a long time, the plane, the catenoid and the helicoid
were the only known examples of minimal surfaces. In 1835,
Scherk [3] obtained a new example by introducing into the equa-
tion (1.1) the condition that the variables could be separated.
More precisely, Scherk assumed that f (x,y) = g(x)+ h(y). With
this condition, the partial derivatives are replaced by ordinary
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Figure 1: Catenoid and Helicoid.

derivatives and the equation takes the form

(1+ ḣ2(y))g̈(x)+(1+ ġ2(x))ḧ(y) = 0,

that is
g̈(x)

1+ ġ2(x) = −
ḧ(y)

1+ ḣ2(y)
= constant,

whose integration gives us,

f (x,y) = 1
a

ln ∣cos(ay)
sen(ax)∣

where a is a nonzero constant. Such surfaces are known as the
Scherk surfaces.

Figure 2: Scherk Surface.
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2 Generalizations of the Scherk Surfaces

Along the years, Scherk surfaces in the Euclidean 3-space were
generalized. Before we present some generalizations, consider
the following definition.

Definition 2.1. In the Euclidean space R3, a surface is called a
translation surface if it is parametrized as

Ψ ∶U ⊂R2→R3; Ψ(x,y) = (x,y,g(x)+h(y)),

where f and g are smooth functions.

That is, M2 can be thought as a composition of plane curves
given by graphs, that is: denote by α(x) = (x,0,g(x)) and β(y) =
(0,y,h(y)). For p ∈ R3 denote by Lp ∶ R3 → R3, the translation
through p, given by Lp(q) = p+q. Then, the map Ψ above is given
by

Ψ(x,y) = Lα(x)(β(y)) = α(x)+β(y).

The natural generalization to be considered for Scherk sur-
faces (minimal translational surfaces) are translational surfaces
with constant mean curvature. In this case, Liu [4] obtained the
classification of such surfaces.

In another generalization, the Euclidean space R3 was re-
placed with other space, usually a three-dimensional Lie group,
and the notion of the translation surface was carefully adapted
by use of the group operation. For some of these generalizations,
see, e.g. [5], [6] e [7].

On the other hand, one can consider the translational sur-
faces in R3 expressed in parametric form as
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Ψ(s,t) = α(s)+β(t),

where α ∶ I ⊂ R→ R3, β ∶ J ⊂ R→ R3 are regular curves satisfying
the condition α

′(s)×β
′(t) ≠ 0. Dillen et al. [8] proved that: There

are no minimal surfaces in the three dimensional Euclidean spa-
ce, defined as the sum of a planar curve and a space curve. Later,
López and Perdomo [9] obtained a characterization of the mini-
mal translational surfaces when α e β are not planar.

Finally, translational surfaces were generalized to transla-
tional hypersurfaces in an Euclidean space of arbitrary dimen-
sion. In the next section, we’ll go into more detail.

3 Translation Hypersurfaces

In this section we will deal in more detail with the translational
hypersurfaces in an Euclidean space of arbitrary dimension, di-
rection in which we have obtained our results.

Definition 3.1. We say that a hypersurface Mn of the Euclidean
space Rn+1 is a translation hypersurface if it is the graph of a
function given by

F(x1, . . . ,xn) = f1(x1)+ . . .+ fn(xn)

where (x1, . . . ,xn) are cartesian coordinates and fi is a smooth
function of one real variable for i = 1, . . . ,n.

Dillen, Verstraelen and Zafindratafa [10] obtained a clas-
sification of minimal translation hypersurfaces of the (n + 1)-
dimensional Euclidean space. A classification of translation hy-
persurfaces with constant mean curvature in (n+1)-dimensional
Euclidean space was made by Chen, Sun and Tang [11].
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Now, let Mn ⊂Rn+1 be an oriented hypersurface and λ1, . . . ,λn

denote the principal curvatures of Mn. We can consider similar
problems related with the r-th elementary symmetric polynomi-
als, Sr, given by Sr =∑λi1⋯λir , where r =1, . . . ,n and 1≤ i1 <⋯< ir ≤n.
In particular, S1 is the mean curvature, S2 the scalar curvature
and Sn the Gauss-Kronecker curvature, up to normalization fac-
tors. A very useful relationship involving the various Sr is given
by the next proposition. This result will play a central role along
this paper.
Proposition 3.1 (Caminha, 2006 [12]). Let n > 1 be an integer,
and λ1, . . . ,λn be real numbers. Define, for 0 ≤ r ≤ n, Sr = Sr(λ1) as
above, and set Hr =Hr(λi) = (n

r)
−1

Sr(λi)

(a) For 1 ≤ r ≤ n, one has H2
r ≥ Hr−1Hr+1. Moreover, if equality hap-

pens for r = 1 or for some 1 < r < n, with Hr+1 ≠ 0 in this case, then
λ1 = . . . = λn.

(b) If H1,H2, . . .Hr > 0 for some 1 < r ≤ n, then

H1 ≥
√

H2 ≥ 3
√

H3 ≥⋯ ≥ r
√

Hr .

Moreover, if equality happens for some 1 ≤ j < r, then λ1 = . . . = λn.

(c) If for some 1 ≤ r < n, one has Hr = Hr+1 = 0, then H j = 0 for all
r ≤ j ≤ n. In particular, at most r− 1 of the λi are different from
zero.

In this paper, we obtain a complete classification of trans-
lation hypersurfaces of Rn+1 with zero scalar curvature. More
specifically, we prove the following
Theorem 3.1. Let Mn (n ≥ 3) be a translation hypersurface in
Rn+1. Then Mn has zero scalar curvature if, and only if, it is con-
gruent to the graph of the following functions
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• F(x1, . . . ,xn) =
n−1

∑
i=1

aixi+ fn(xn)+b, on Rn−1×J, for some interval

J, and fn ∶ J ⊂R→R is a smooth function. Which defines, af-
ter a suitable linear change of variables, a vertical cylinder,
and

• A generalized periodic Enneper hypersurface given by

F(x1, . . . ,xn) =
n−3

∑
i=1

aixi+
√

β

a
ln

RRRRRRRRRRRRRR

cos(− ab
a+b

√
βxn+c)

cos(a
√

βxn−2+a0)

RRRRRRRRRRRRRR

+
√

β

b
ln

RRRRRRRRRRRRRR

cos(− ab
a+b

√
βxn+c)

cos(b
√

βxn−1+b0)

RRRRRRRRRRRRRR
+d

on Rn−3× I1× I2× I3, where a,a1, . . . ,an−3,b,b0,c,d are real constants

with a,b,a+ b ≠ 0, β = 1+
n−3

∑
i=1

a2
i and I1,I2,I3 are the opens inter-

vals defined, respectively, by the conditions ∣a
√

βxn−2 + a0∣ < π/2,
∣b
√

βxn−1+b0∣ < π/2 and ∣− ab
a+b

√
βxn+c∣ < π/2.

In [13], T. Okayasu used the method of equivariant geom-
etry to construct the first example of a complete hypersurface
with constant negative scalar curvature in R4 (n ≥ 4). And, in
[14], T. Okayasu constructed a new family of noncompact com-
plete hypersurfaces with constant positive scalar curvature in
the Euclidean space. However, these examples do not define en-
tire graphs. Moreover, we don’t know whether there exists an
entire graph on Rn with constant negative scalar curvature and,
in [15], Alencar et al showed in Corollary 4.1 that: Any entire
graph on Rn with nonnegative constant scalar curvature must
have zero scalar curvature. In this work, we classify the trans-
lation hypersurfaces of Rn+1 with constant scalar curvature and
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we obtain a result that endorses the fact proved by Alencar et
al. More precisely,

In this work, we classified the translational hypersurfaces of
Rn+1 with constant scalar curvature and obtained a result that
endorses the fact proved by Alencar et al. More precisely,
Theorem 3.2. Any translation hypersurface in Rn+1 (≥ 3) with
constant scalar curvature must have zero scalar curvature.

4 Proof of the Results

For a better understanding of the results which we will prove in
this section, we first introduce some notations, definitions and
basic facts.

Let M
n+1 be a connected Riemannian manifold. In the re-

mainder of this paper, we will be concerned with isometric im-
mersions, Ψ ∶ Mn → M

n+1, from a connected, n-dimensional ori-
entable Riemannian manifold, Mn, into M

n+1. We fix an orien-
tation of Mn, by choosing a globally defined unit normal vector
field, N, on M. Denote by A, the corresponding shape operator. At
each p ∈M, A restricts to a self-adjoint linear map Ap ∶ TpM→ TpM.
For each 1 ≤ r ≤ n, let Sr ∶ Mn → R be the smooth function such
that Sr(p) denotes the r-th elementary symmetric function on
the eigenvalues of Ap, which can be defined by the identity

det(tI−A) =
n

∑
k=0

(−1)kSktn−k.

where S0 = 1 by definition. If p ∈ Mn and {el} is a basis of TpM,
given by eigenvectors of Ap, with corresponding eigenvalues {λl},
one immediately sees that
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Sr = σr(λ1, . . . ,λn),

where σr ∈R[X1, . . . ,Xn] is the r-th elementary symmetric polyno-
mial on X1, . . . ,Xn. Consequently,

Sr = ∑
1≤i1<⋯<ir≤n

λi1⋯λir , where r = 1, . . . ,n.

When the ambient space M
n+1 has constant sectional curva-

ture, c, Gauss equation allows one to check, immediately, that
the scalar curvature R of Mn relates to S2 in the following form:

n(n−1)(R−c) = 2S2.

When c = 0, we obtain a particular relationship between the
scalar curvature and the second symmetric function of the prin-
cipal curvatures: n(n− 1)R = 2S2. Hence we conclude that the
scalar curvature is constant and equal to zero if, and only if, S2

vanishes identically.

Related to the curvature S2, we also present in the next
proposition, a useful result that will be used later. In order to
do so, consider the following notation: for 1 ≤ i1, . . . , iq, j1, . . . , jq ≤ n,
the Kronecker symbol δ( i1⋯iq

j1⋯ jq
) has the value +1 (respectively −1)

if i1, . . . , iq are distinct and ( j1⋯ jq) is an even (respectively, an
odd) permutation of (i1⋯iq). Otherwise, it has value 0.

Proposition 4.1 (Reilly [16], Prop. 1.2). Suppose that, relative
to some basis of the vector space V , the self-adjoint linear map
A ∶V →V has matrix A j

i . Then,

Sq(A) = 1
q!
∑δ( i1⋯iq

j1⋯ jq
)A jq

i1 ⋯A jq
iq ,
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whereSq is the q-th elementary symmetric polynomial of the eigen-
values of the linear map A.

Now, suppose that Mn ↪Rn+1 is the graph xn+1 = F(x1, . . . ,xn).
We denote the natural parametrization of Mn by

Ψ(x1, . . . ,xn) = (x1, . . . ,xn,F(x1, . . . ,xn)) =
n

∑
j=1

x je j +F(x1, . . . ,xn)en+1.

where e j = (0, . . . ,0,1,0, . . . ,0) (1 in the j-th place), and the par-
tial derivatives ∂F

∂x j
, ∂

2F
∂x j∂xk

,⋯, by Fj,Fjk,⋯. We recall the standard
calculations in a single proposition.
Proposition 4.2 (Reilly [16], Proposition 3.1). If Mn → Rn+1 is
the graph xn+1 = F(x1, . . . ,xn) and W =

√
1+F2

1 + . . .+F2
n , then:

(a) The natural frame field on Mn is Ψ1, . . . ,Ψn where Ψi = ∂Ψ

∂xi
=

ei+Fien+1 and the unit normal is

N = −
n

∑
j=1

Fj

W
e j +

1
W

en+1.

(b) The matrix of the shape operator is

b j
i =

Fi j

W
−

n

∑
k=1

FikFkFj

W 3 .

To conclude this section, we present in the next proposition
the equation for the scalar curvature of a translation hypersur-
face in Rn+1.
Proposition 4.3. Let Mn be a translation hypersurface immersed
in Rn+1 parametrized by

Ψ ∶U ⊂Rn→Rn+1 ∶ Ψ(x1, . . . ,xn) = (x1, . . . ,xn,F(x1, . . . ,xn))
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where (x1, . . . ,xn) are cartesian coordinates, F(x1, . . . ,xn) =
n

∑
i=1

fi(xi)

and fi is a smooth function of one real variable. Then,

S2 =
1

W 4 ∑
1≤i< j≤n

f̈i f̈ j(1+ ∑
1≤k≤n
k/=i, j

ḟ 2
k ). (4.1)

Proof. It follows from Proposition 4.2 and the fact that Fi j = 0,
when i ≠ j, that the matrix of the shape operator has the follow-
ing expression

b j
i =

1
W 3 (Fi jW 2−FiiFiFj).

Now, from Proposition 4.1 we obtain

S2 = ∑
1≤i1<i2≤n

δ( i1 i2
j1 j2

)A j1
i1 ⋅A

j2
i2 = ∑

1≤i< j≤n
(bi

i b
j
j −b j

i bi
j).

Again from Proposition 4.2, we get

bi
i b

j
j −b j

i bi
j = 1

W 6 [ f̈i(W 2− ḟ 2
i ) f̈ j(W 2− ḟ 2

j )−(− f̈i ḟi ḟ j)(− f̈ j ḟ j ḟi)]

= 1
W 6 f̈i f̈ j [(W 2− ḟ 2

i )(W 2− ḟ 2
j )− ḟ 2

i ḟ 2
j ]

= 1
W 4 f̈i f̈ j(W 2− ḟ 2

i − ḟ 2
j ).

This completes the proof of the proposition.

In order to prove Theorem 3.1 we need the following lemma.
Lemma 4.1. Let f , g, and h be smooth functions of one real vari-
able satisfying the differential equation

f̈ (x)g̈(y)(β + ḣ2(z))+ f̈ (x)ḧ(z)(β + ġ2(y))+ g̈(y)ḧ(z)(β + ḟ 2(x)) = 0,
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where β is a positive real constant. If f̈ ≠ 0, g̈ ≠ 0 and ḧ ≠ 0, then

f (x)+g(y)+h(z) =
√

β

a
ln

RRRRRRRRRRRRRR

cos(− ab
a+b

√
β z+c)

cos(a
√

βx+a0)

RRRRRRRRRRRRRR

+
√

β

b
ln

RRRRRRRRRRRRRR

cos(− ab
a+b

√
β z+c)

cos(b
√

βy+b0)

RRRRRRRRRRRRRR
+d

where a,a0,b,b0,c and d are real constants with a,b,a+b ≠ 0.

Proof. The functions f , g, and h satisfy the differential equation
above if and only if

f̈ g̈
(β + ḟ 2)(β + ġ2)

+ f̈ ḧ
(β + ḟ 2)(β + ḣ2)

+ g̈ ḧ
(β + ġ2)(β + ḣ2)

= 0. (4.2)

Derivatives with respect to x and y, in (4.2), lead to the equations

( f̈
β + ḟ 2

)
′

= 0 or ( g̈
β + ġ2 )

′

= 0.

If f̈ = a(β + ḟ 2) for some constant a ≠ 0, since f̈ ≠ 0, substituting in
(4.2) gives

g̈
β + ġ2 a+ ḧ

β + ḣ2
a+ g̈ ḧ

(β + ġ2)(β + ḣ2)
= 0. (4.3)

Now, take the derivatives of (4.3) with respect to y and z to obtain

( g̈
β + ġ2 )

′

= 0 or ( ḧ
β + ḣ2

)
′

= 0.

If g̈ = b(β + ġ2), for some nonzero constant b, since g̈ ≠ 0, substi-
tuting in (4.3) we get
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ab+ ḧ
β + ḣ2

(a+b) = 0.

which implies that a+ b ≠ 0, since ab ≠ 0. Integration of these
ordinary differential equations implies

arctan
⎛
⎝

ḟ (x)√
β

⎞
⎠

= a
√

βx+a0

arctan
⎛
⎝

ġ(y)√
β

⎞
⎠

= b
√

β z+b0

arctan
⎛
⎝

ḣ(z)√
β

⎞
⎠

= − ab
a+b

√
β z+c.

Therefore,

f (x) = −1
a

√
β ln ∣cos(a

√
βx+a0)∣+a1

g(x) = −1
b

√
β ln ∣cos(b

√
βy+b0)∣+b1

h(x) = a+b
ab

√
β ln ∣cos(− ab

a+b

√
β z+c)∣+c1.

Denoting d = a1+b1+c1, we conclude the proof of the lemma.

With this lemma at hand we can go to the proof of Theorem
3.1.

4.1 Proof of Theorem 3.1

Proof. From Proposition 4.3, we have that Mn has zero scalar
curvature if, and only if,
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∑
1≤i< j≤n

f̈i f̈ j(1+ ∑
1≤k≤n
k/=i, j

ḟ 2
k ) = 0. (4.4)

In order to ease the analysis, we divide the proof in four cases.

Case 1: Suppose f̈i(xi) = 0, ∀ i = 1, . . . ,n−1. In this case, we have
no restrictions on the function fn, thus

Ψ(x1, . . . ,xn) = (x1, . . . ,xn,
n−1

∑
i=1

aixi+ fn(xn)+b)

where ai,b ∈ R and fn ∶ I ⊂ R→ R is a smooth function of one real
variable. Note that the parametrization obtained comprise hy-
perplanes.

Case 2: Suppose f̈i(xi) = 0, ∀ i = 1, . . . ,n−2, then, there are con-
stants αi such that fi = αi. From (4.4) we have

f̈n−1 f̈n(1+α
2
1 +⋯+α

2
n−2) = 0,

from which we conclude that f̈n−1 = 0(or f̈n = 0) that is contained
in the Case 1.

Case 3: Now suppose f̈i(xi) = 0, ∀ i = 1, . . . ,n− 3 and f̈k(xk) ≠ 0,
for every k = n− 2,n− 1,n. Observe that if we had f̈k(xk) = 0 for
some k = n− 2,n− 1,n the analysis would reduce to the Cases 1
and 2. In this case, there are constants αi such that fi = αi for
any 1 ≤ i ≤ n−3. From (4.4) we have

f̈n−2 f̈n−1(β + ḟ 2
n )+ f̈n−2 f̈n(β + ḟ 2

n−1)+ f̈n−1 f̈n(β + ḟ 2
n−2) = 0

where β = 1+
n−3

∑
k=1

α
2
k . Then, from Lemma 4.1 we have that
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n

∑
k=n−2

fk(xk) =
√

β

a
ln

RRRRRRRRRRRRRR

cos(− ab
a+b

√
βxn+c)

cos(a
√

βxn−2+a0)

RRRRRRRRRRRRRR

+
√

β

b
ln

RRRRRRRRRRRRRR

cos(− ab
a+b

√
βxn+c)

cos(b
√

βxn−1+b0)

RRRRRRRRRRRRRR
+d

where a, a0, b, b0, c and d are real constants, and a, b, a+b are
nonzero.

Case 4: Finally, suppose f̈i(xi) = 0, where 1 ≤ i ≤ k and n− k ≥ 4,
and f̈i(xi) ≠ 0 for any i > k. We will show that this case cannot
occur. In fact, note that for any fixed l ≥ k+1

∑
1≤i< j≤n

f̈i f̈ j(1+ ∑
1≤m≤n
m/=i, j

ḟ 2
m) = f̈l ∑

1≤ j≤n
j/=l

f̈ j(1+ ∑
1≤m≤n
m/=l, j

ḟ 2
m)

+ ∑
1≤i< j≤n

i, j/=l

f̈i f̈ j(1+ ∑
1≤m≤n
m/=i, j

ḟ 2
m).

Derivative with respect to the variable xl (l ≥ k+1), in the above
equality, gives

...
f l ∑

1≤ j≤n
j/=l

f̈ j(1+ ∑
1≤m≤n
m/=l, j

ḟ 2
m)+2 ḟl f̈l ∑

1≤i< j≤n
i, j/=l

f̈i f̈ j = 0. (4.5)

That is, if we set

Al = ∑
1≤ j≤n

j/=l

f̈ j(1+ ∑
1≤m≤n
m/=l, j

ḟ 2
m) and Bl = ∑

1≤i< j≤n
i, j/=l

f̈i f̈ j

then, it follows that Al,Bl do not depend on the variable xl and
we can write

Al
...
f l +2Bl ḟl f̈l = 0, (4.6)
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Now, we have two cases to consider: Al ≠ 0 and Al = 0.

Case Al ≠ 0: Under this assumption, there is a constant αl (l =
k+1, . . . ,n) such that equation (4.6) becomes

...
f l +2αl ḟl f̈l = 0. Sub-

stituting this in identity (4.5), and using the fact that f̈i(xi) ≠ 0

for i > k, we obtain

αl ∑
1≤ j≤n

j/=l

f̈ j(1+ ∑
1≤m≤n
m/=l, j

ḟ 2
m)− ∑

1≤i< j≤n
i, j/=l

f̈i f̈ j = 0. (4.7)

Now, taking the derivatives of the expression (4.7) with respect
to the variable xs, for s = k+1, . . . ,n and s /= l, leads to

αl
...
f s(1+ ∑

1≤m≤n
m/=l,s

ḟ 2
m)+2αl ḟs f̈s ∑

1≤ j≤n
j/=l,s

f̈ j −
...
f s ∑

1≤ j≤n
j/=l,s

f̈ j = 0.

Again using the fact that
...
f s + 2αs ḟs f̈s = 0, for any s = k+ 1, . . . ,n,

and f̈i(xi) ≠ 0 for i > k we get the following equality

−αlαs(1+ ∑
1≤m≤n
m/=l, j

ḟ 2
m)+αl ∑

1≤ j≤n
j/=l,s

f̈ j +αs ∑
1≤ j≤n
j/=l,s

f̈ j = 0. (4.8)

Finally, taking the derivative with respect to the variable xt , on
the expression (4.8), where t = k+1, . . . ,n, t /= l and t /= s, we obtain
the identity

αlαs+αlαt +αsαt = 0.

Hence we conclude that,

σ2(αk+1, . . . ,αn) = 0

σ3(αk+1, . . . ,αn) = 0.
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These equalities, from Proposition 3.1, [12], imply that at most
one of the constants αl (l ≥ k+ 1) is nonzero, suppose αk+1 = ⋯ =
αn−1 = 0. In this case, we have

...
f l = 0 (l = k+1, . . . ,n−1) then f̈l is

constant. Now, setting l /= n in (4.7) we obtain

∑
k+1≤i< j≤n

i/=l
j/=l

f̈i f̈ j = 0.

Which implies that f̈n is constant, and thus αn = 0. Now, from
equation (4.7) we get

∑
{i< j}⊂{l1<⋯<ln−k−1}

{l1<⋯<ln−k−1}⊂{k+1,...,n}

f̈i f̈ j = 0.

From which, we conclude that

σ2( f̈k+1, . . . , f̈n) = 0

σ3( f̈k+1, . . . , f̈n) = 0.

Thus, at most one of the functions f̈l (k+1 ≤ l ≤ n) is nonzero lead-
ing to a contradiction. Thus, it follows that Case 4 cannot occur,
if Al ≠ 0.

Case Al = 0: In this case, we have

Al = ∑
1≤ j≤n

j/=l

f̈ j(1+ ∑
1≤m≤n
m/=l, j

ḟ 2
m) = 0.

Consequently, derivative of Al with respect to variable xp, for
p = k+1, . . . ,n, p ≠ l, gives
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...
f p(1+ ∑

1≤m≤n
m/=l,p

ḟ 2
m)+2 ḟp f̈p ∑

k+1≤ j≤n
j/=l,p

f̈ j = 0. (4.9)

From (4.5), since Al = 0 we have

2 ḟl f̈l ∑
k+1≤i< j≤n

i, j/=l

f̈i f̈ j = 0

implying that
∑

k+1≤i< j≤n
i, j/=l

f̈i f̈ j = 0, since f̈l ≠ 0.

Now, for p = k + 1, . . . ,n, with p ≠ l, the derivative of the above
equation with respect to xp gives

...
f p ∑

k+1≤ j≤n
j/=l,p

f̈ j = 0 (4.10)

and for q = k+1, . . . ,n, with q ≠ l, p, taking the derivative of (4.10)
with respect to xq, leads to

...
f p

...
f q = 0. Consequently, for at most

one index, say p, one can have
...
f p ≠ 0, and

...
f q = 0 for every q =

k+1, . . . ,n, and q ≠ l, p. Thus
...
f p ≠ 0 together with equation (4.10)

implies that the sum
∑

k+1≤ j≤n
j/=l,p

f̈ j = 0

which, on its turn inserted on equation (4.9) gives
...
f p = 0,

contradicting
...
f p ≠ 0. Thus, one must have

...
f p = 0, for every

p = k+1, . . . ,n, and p ≠ l. Applying these conditions on the third
derivatives in (4.9) we obtain the following linear system:

∑
k+1≤ j≤n

j/=l,p

f̈ j = 0, p = k+1, . . . ,n and p ≠ l
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which has as unique solution f̈ j = 0, for every j = k+1, . . . ,n, and
j ≠ l. This contradicts the hypothesis assumed in Case 4. Hence,
Al = 0 cannot occur. Since the case Al ≠ 0, cannot occur as well, it
follows that Case 4 is not possible. This completes the proof of
the theorem.

4.2 Proof of Theorem 3.2

Proof. Suppose that there is a translation hypersurface with
nonzero constant scalar curvature S2. The derivative of the ex-
pression (4.1) for S2 with respect to xl, gives

0 = − 4 ḟl f̈l

W 6 ∑
1≤i< j≤n

f̈i f̈ j(1+ ∑
1≤k≤n
k/=i, j

ḟ 2
k )

+ 1
W 4 [

...
f l ∑

1≤ j≤n
j/=l

f̈ j(1+ ∑
1≤k≤n
k/=l, j

ḟ 2
k )+2 ḟl f̈l ∑

1≤i< j≤n
i, j/=l

f̈i f̈ j].

Then,

4S2 ḟl f̈l =
1

W 2 [
...
f l ∑

1≤ j≤n
j/=l

f̈ j(1+ ∑
1≤k≤n
k/=l, j

ḟ 2
k )+2 ḟl f̈l ∑

1≤i< j≤n
i, j/=l

f̈i f̈ j]. (4.11)

Now, taking the derivative of equation (4.11) with respect to
xs (s /= l) we get

0 = −4 ḟs f̈s

W 4 [
...
f l ∑

1≤ j≤n
j/=l

f̈ j(1+ ∑
1≤k≤n
k/=l, j

ḟ 2
k )+2 ḟl f̈l ∑

1≤i< j≤n
i, j/=l

f̈i f̈ j]

+ 1
W 2 [

...
f l

...
f s(1+ ∑

1≤k≤n
k/=l,s

ḟ 2
k )+2

...
f l ḟs f̈s ∑

1≤ j≤n
j/=l,s

f̈ j +2 ḟl f̈l
...
f s ∑

1≤ j≤n
j/=l,s

f̈ j].
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Hence, we conclude that,

8 ḟl f̈l ḟs f̈sS2 =
...
f l

...
f s(1+ ∑

1≤k≤n
k/=l,s

ḟ 2
k )+2(

...
f l ḟs f̈s+ ḟl f̈l

...
f s) ∑

1≤ j≤n
j/=l,s

f̈ j. (4.12)

Finally, derivative of equality (4.12) with respect to xt (t /= l and t /=
s) gives

...
f l

...
f s ḟt f̈t +

...
f l

...
f t ḟs f̈s+

...
f s

...
f t ḟl f̈l = 0. (4.13)

Suppose that f̈l f̈s f̈t ≠ 0 and
...
f l = 0, then from (4.13) we have

that
...
f s = 0 (or

...
f t = 0) and from (4.12) it follows that 8 ḟl f̈l ḟs f̈sS2 = 0,

generating a contradiction. Therefore,
...
f l ≠ 0. Similarly,

...
f s ≠ 0

and
...
f t ≠ 0. Then, from (4.13) we have

...
f l

ḟl f̈l

...
f s

ḟs f̈s
+

...
f l

ḟl f̈l

...
f t

ḟt f̈t
+

...
f s

ḟs f̈s

...
f t

ḟt f̈t
= 0.

We conclude that there is a constant nonzero αl such that
...
f l = αl ḟl f̈l. Substituting in (4.11) we obtain

4S2W 2 = αl ∑
1≤ j≤n

j/=l

f̈ j(1+ ∑
1≤k≤n
k/=l, j

ḟ 2
k )+2 ∑

1≤i< j≤n
i, j/=l

f̈i f̈ j.

Differentiating this identity with respect to variable xl, we
get ḟl f̈lS2 = 0, contradicting the fact f̈l f̈s f̈t ≠ 0. Thus, we must have
f̈l f̈s f̈t = 0. Hence we conclude that,

σ3( f̈1, . . . , f̈n) = 0

σ4( f̈1, . . . , f̈n) = 0.

Implying that at least n−2 derivatives f̈l vanish. However,
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since S2 ≠ 0, from the equation (4.1), it follows that it is not pos-
sible to have more than n−2 vanishing second derivatives, f̈l = 0.
Hence, we can assume that f̈1 = ⋯ = f̈n−2 = 0, f̈n−1 ≠ 0 and f̈n ≠ 0,
and consequently expression (4.1) becomes

0 ≠W 4S2 = f̈n−1 f̈nα

for some real constant α. Therefore,

0 ≠ 4W 2 ḟn−1 f̈n−1S2 =
...
f n−1 f̈nα

0 ≠ 8 ḟn−1 f̈n−1 ḟn f̈nS2 =
...
f n−1

...
f nα

hence we conclude that there exists a constant β such that
...
f n−1 =

β ḟn−1 f̈n−1 ≠ 0 and, then, 4W 2S2 = f̈nαβ . Again, the derivative with
respect to xn−1 implies that

8 ḟn−1 f̈n−1S2 = 0,

contradicting the fact f̈n−1 ≠ 0. This concludes the proof of the
theorem.
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Abstract: In this short note we introduce a notion of con-
servativeness for the heat semigroup associated to the Hodge
Laplacian acting on absolute differential forms on a noncom-
pact manifold with a (possibily noncompact) boundary. Assum-
ing that reflected Brownian motion on the underlying mani-
fold is conservative and imposing suitable lower bounds on the
Weitzenböck curvature operator and on the shape operator of
the boundary we then show that the corresponding conservative
principle holds. This extends to our setting a previous result by
Masamune [M] in the boundaryless case. A key ingredient in
the proof is a domination property for the heat semigroup which
follows from a Feynman-Kac formula recently proved by the au-
thor [dL1].

†Partially suported by CNPq and FUNCAP/CNPq/PRONEX 73



L. L. de Lima

1 Preliminary notions and statement of
the main result

Throughout this note we consider a noncompact Rieman-
nian manifold (X ,g) of dimension n ≥ 2. We assume that X car-
ries a (possibly noncompact) boundary Σ, which is oriented by
the inward unit normal vector ν . Also, we assume that X is
“geodesically complete” in the sense that any geodesic avoiding
Σ is defined for all positive time. For each 0 ≤ p ≤ n we denote by
Ap(X) the space of smooth differential p-form on X and by ( ,)p

the L2 inner product on Ap(X) induced by g = ⟨ ,⟩. Finally, we
represent by B = −∇ν the shape operator of Σ.

Let Xx
t be reflected Brownian motion starting at x ∈ X [IW,

Hs2, dL1]. This is a continuous stochastic process driven by
−1

2 ∆0, where ∆0 is the (nonnegative) Laplacian acting on bounded
functions satisfying Neumann boundary condition along Σ

1.

In general, Xx
t might fail to be a Markov process. More pre-

cisely, let X̂ = X ∪{∞} be the one-point compactification of X and
define

e(x) = inf{t ≥ 0;Xx
t =∞}.

For obvious reasons, e is called the extinction time of Xx
t . Now,

the Markov property for Xx
t might not hold precisely because the

process might be explosive in the sense that e /≡ +∞.

This somewhat annoying explosiveness property can be re-
formulated in analytical terms as follows. It is not hard to check
that the semigroup generated by − 1

2 ∆0 is given by

1Thus, our sign convention is so that ∆0 = −d2/dx2 on R.
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(e−
1
2 t∆0 f )(x) =E( f (Xx

t )χ{t<e(x)}), (1.1)

where f is a bounded, smooth function on X satisfying Neumann
boundary condition and χE is the indicator function of a sub-
set E. It follows that t ↦ e−

1
2 t∆0 is a (local) positive preserving,

contraction semigroup on the space of such functions. Applying
(1.1) with f = 1, the function identically equal to 1, we get

(e−
1
2 t∆01)(x) = P[t < e(x)].

So in general we have e−
1
2 t∆01 ≤ 1 but being explosive means pre-

cisely that e−
1
2 t∆01 /≡ 1 for some (and hence any) t > 0. This means

that constant functions are not preserved by the semigroup.

Another way of expressing this sub-Markov property of Xt

relies on the well-known fact that the associated semigroup can
be represented by convolution against a smooth kernel; see [B,
Chapter 4]. More precisely,

(e−
1
2 t∆0 f )(x) = ∫

X
K0(t;x,y) f (y)dXy,

where K0 is the Neumann heat kernel, that is, the fundamen-
tal solution of the initial value problem associated to the heat
operator

L = ∂

∂ t
+ 1

2
∆0

with Neumann boundary condition along Σ. Thus, in general we
have

∫
X

K0(t;x,y)dXy ≤ 1,

but again in the explosive case the strict equality holds for some
t > 0. In this case we are not allowed to interpret K0 as a transi-
tion probability density function for Xt .
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The following proposition summarizes the discussion above.

Proposition 1.1. The following are equivalent:

1. Xx
t is non-explosive in the sense that e ≡ +∞;

2. For some/any t > 0 and any x ∈ X , K0(t;x, ⋅) is a probability
density function on X .

3. For some/any t > 0, e−
1
2 t∆01 = 1;

4. For some/any t > 0, (e−
1
2 t∆0 f ,1)0 = ( f ,1)0, for any compactly

supported f ∈ A0(X) satisfying Neumann boundary condi-
tion;

We now introduce the following terminology.
Definition 1.1. If any of the conditions in Proposition 1.1 hap-
pens then we say that the conservative principle holds on A0(X).

This property means that the desired probabilistic interpre-
tation for K0 is restored so that Xt is turned into a genuine Mark-
ov process. Equivalently, constant functions are preserved by
the semigroup. As we will see later on, this property admits a
natural extension to differential forms; see Definition 1.3 below.

It is not hard to exhibit examples of noncompact, geodesi-
cally complete manifolds for which the conservative principle on
A0 does not hold; see for instance [A] for the boundaryless case.
The following general result due to Gregor’yan provides a suffi-
cient condition for conservativeness.
Theorem 1.1. Let (X ,g) be as above and assume that there exists
x0 ∈ X such that

∫
+∞ rdr

logvol(Br(x0))
= +∞.

Then the conservative principle holds on A0(X). In particular,
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this is the case if vol(Br(x0)) ≤Cer2
.

Proof. Either adapt the argument in the proof of [G, Theorem
9.1] or appeal to the general abstract result in [St, Theorem 4].

So far this is the best available sufficiency result for con-
servativeness on A0. Here we will be interested in generaliza-
tions to differential forms of a slightly weaker criterium which
involves imposing curvature conditions both in the interior and
along the boundary. In the boundaryless case this is due to Yau
[Y].
Theorem 1.2. If (X ,g) is as above, assume that both the Ricci
tensor and the shape operator are uniformly bounded from below.
Then the conservative principle holds on A0(X) .

Proof. See Remark 3 for a simple proof based on the Feynman-
Kac formula for differential 1-forms proved in [Hs1, dL1].

In order to state our main result, we need to describe the
analogue of e−

1
2 t∆0 acting on p-forms. Let d be the exterior differ-

ential acting on forms and d⋆ =±⋆d⋆ be the codifferential, where
⋆ is the Hodge star operator. In fact, as an operator on p-forms,
d⋆ = (−1)np+n+1 ⋆ d⋆. Recall that the pointwise inner product of
differential forms, denoted ⟨α,β ⟩, is the Hodge dual to α ∧⋆η .
Since

dα ∧⋆β = α ∧⋆d⋆β +d(α ∧⋆β), α ∈ Ap−1(X), β ∈ Ap(X),

if we assume further that α ∧⋆β is compactly supported, Stokes
theorem gives
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∫
X
⟨dα,β ⟩dX = ∫

X
⟨α,d⋆β ⟩dX +∫

Σ

α ∧⋆β .

Given α ∈ Ap(X), its restriction to Σ decomposes into its tan-
gential and normal components, namely,

α = αt+αn.

We note that the star operator intertwines the corresponding
orthogonal projections. We then have

(α ∧⋆β)t = αt∧(⋆β)t = αt∧⋆βn,

so we obtain Green’s formula:

∫
M
⟨dα,β ⟩dX = ∫

X
⟨α,d⋆β ⟩dX +∫

Σ

αt∧⋆βn.

From this we have

∫
X
⟨∆pα,β ⟩dX = ∫

X
(⟨dα,dβ ⟩+⟨d⋆α,d⋆β ⟩)dX

+∫
Σ

((d⋆α)t∧⋆βn−βt∧⋆(dα)n) , (1.2)

where the Hodge Laplacian acting on p-forms is given by

∆p = (d+d⋆)2 = dd⋆+d⋆d.

Definition 1.2. We say that a p-form α is absolute if αn = 0 and
(dα)n = 0.

It follows from (1.2) that under this boundary condition, ∆p

is formally selfajoint because the boundary integral vanishes
and we get
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∫
X
⟨∆pα,β ⟩dX = ∫

X
(⟨dα,dβ ⟩+⟨d⋆α,d⋆β ⟩)dX . (1.3)

Moreover, absolute boundary conditions are of elliptic type so
we may apply elliptic theory and spectral theory to define the
corresponding heat semigroup e−

1
2 t∆a

p ∶ L2Ap(X) → L2Ap(X) [Sc1,
Sc2]. Thus, if Ap

a (X) is the space of absolute p-forms and ω0 ∈
L2Ap

a (X)∩L∞a Ap(X) then ωt = e−
1
2 t∆pω0 ∈ L2Ap

a (X) for any t > 0 and
moreover it solves the heat equation

∂ωt

∂ t
+ 1

2
∆pωt = 0, lim

t→0
ωt =ω0. (1.4)

Also,
lim

t→+∞
e−

1
2 t∆p =ΠHp

a (X), (1.5)

the orthogonal projection onto the space Hp
a (X) of absolute L2

harmonic p-forms. Note that from (1.3) we see that ω ∈ Hp
a (X)

if and only if dω = 0 and d⋆ω = 0. In particular, any f ∈ H0
a(X) is

constant.

Inspired by [V, M] we now extend the notion of conservative-
ness for p-forms on a noncompact manifold with boundary.
Definition 1.3. We say that the conservative principle holds on
Ap(X) if the equality

(e−
1
2 t∆pω,η)

p
= (ω,η)p (1.6)

holds for any compactly supported ω ∈ Ap
a(X) and any bounded

η ∈ Hp
a (X).

This means that absolute, bounded L2 harmonic p-forms are
preserved by the heat semigroup e−

1
2 t∆p .

Our main result provides a criterium for the validity of this
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principle in terms of certain lower bounds on the curvature. The
first notion of curvature we use has to do with the so-called
Weitzenböck decomposition on p-forms, namely,

∆p = ◻p+Rp,

where ◻p is the Bochner Laplacian and Rp is the Weitzenböck
operator, a (pointwise) selfadjoint operator acting on p-forms
whose local expression depends on the curvature tensor of (X ,g)
[Ro]. We note that R1 =Ric and since ⋆Rp = Rn−p⋆, this also deter-
mines Rn−1. However, the structure of Rp, 2 ≤ p ≤ n−2, is notori-
ously hard to grasp.

The other curvature operator appearing in our main result
is obtained by first extending the shape operator B = −∇ν of Σ to
T M∣Σ by declaring that Bν = 0 and then extending this to act on
p-forms restricted to the boundary as the selfadjont operator Bp

given by
(Bpω)(e1,⋯,ep) =∑

i
ω(e1,⋯,Bei,⋯,ep).

Notice that (Bpω)n = 0 for any ω, that is, Bpω is always tangen-
tial. To determine the eigenvalues of Bp restricted to tangential
forms we choose ei so that Bei = κiei, where κi are the principal
curvatures of Σ. It is then immediate to check that

(Bpω)(ei1 ,⋯,eip) =
⎛
⎝∑j

κi j

⎞
⎠

ω(ei1 ,⋯,eip),

which shows that the sums in the brackets are the (possibly
nonzero) eigenvalues of Bp.

To these curvature invariants we attach the functions
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r(p) ∶ X ↦R, r(p)(x) = inf
∣ω ∣=1

⟨Rp(x)ω,ω⟩,

and

κ(p) ∶ Σ↦R, κ(p)(x) = inf
1≤i1<⋯<ip≤n−1

κi1(x)+⋯+κip(x),

which record the corresponding least eigenvalues. With this ter-
minology at hand we can finally state our main result.
Theorem 1.3. Let (X ,g) be as above and assume that the con-
servative principle holds for A0(X). Assume also that for some
1 ≤ p ≤ n− 1 we have r(p) ≥ c1 and κ(p) ≥ c2 for some c1,c2 > −∞.
Then the conservative principle holds on Ap(X).
Corollary 1.1. Let (X ,g) be as above and assume that both the
Ricci tensor and the shape operator are uniformly bounded from
below. Then the conservative principle holds on A1(X).

Proof. Just combine Theorem 1.3 with Theorem 1.2.

The proof of Theorem 1.3 is presented in Section 3 below.
It crucially uses a semigroup domination property for the heat
semigroup e−

1
2 t∆p which is a consequence of the Feynman-Kac

formula proved in [dL1]. This is explained in the next section.
We also briefly discuss a version of Theorem 1.3 for spinors in
Section 4; see Theorem 4.1. In fact, these results can be ex-
tended to a much larger class of Laplace-type operators act-
ing on sections of a vector bundle over X which satisfy suitable
boundary conditions. We hope to address these questions in this
generality in a forthcoming paper [dL2].
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2 The Feynman-Kac formula and semigro-
up domination

Here we show how the Feynman-Kac formula proved in [dL1]
leads to a semigroup domination result for e−

1
2 t∆p under suitable

lower bound assumptions on Rp and Bp; see also [Hs2] for an
important previous contribution.

We start with a discussion of the Feynman-Kac formula. As
usual, we resort to the so-called Eells-Elworthy-Malliavin ap-
proach to stochastic analysis on manifolds, as exposed in [Hs1].
The first step is to rephrase Definition 1.2 in terms of the nat-
ural orthogonal projections Πt and Πn whose ranges are formed
by tangential and normal components of a form restricted to Σ,
respectively.

Proposition 2.1. [dL1, Proposition 5.1] A differential p-form ω

is absolute if and only if

Πnω = 0, Πt(∇ν −Bp)ω = 0. (2.1)

Thus, absolute boundary conditions are of mixed type in the
intermediate range 1 ≤ p ≤ n−1, that is, they are Dirichlet in nor-
mal directions and Robin in tangential directions.

Let Xt , t ≥ 0, be the (normally) reflected Brownian motion on
X starting at some x0. We assume that the conservative princi-
ple holds on A0, since this is required in Theorem 1.3. In view
of Proposition 1.1, this means that Xt is non-explosive, so the
sample paths Xx

t remain in X for all time.

Recall that Xt = πX̃t , where π ∶ PSO(X) → X is the principal
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bundle of oriented orthonormal frames and X̃t is the horizontal
reflected Brownian motion starting at some x̃0 ∈ π

−1(x0), whose
anti-development is the standard Brownian motion bt in Rn. For-
mally, X̃t satisfies the stochastic differential equation

dX̃t =
n

∑
i=1

Hi(X̃t)○dbi
t +ν

†(X̃t)dλt , (2.2)

where {Hi}n
i=1 are the fundamental horizontal vector fields, the

dagger means the standard equivariant lift (scalarization) of
tensor fields on X to PSO(X) and λt is the boundary local time
associated to Xt .

We now consider Mε,t ∈ End(∧pRn) satisfying

dMε,t +Mε,t (
1
2

R†
p(X̃t)dt +B†

p,ε(X̃t)dλt) = 0, Mε,0 = I, (2.3)

where ε > 0 and
B†

p,ε = B†
p+ε

−1
Π

†
n. (2.4)

It is known that, as ε → 0, Mε,t converges in L2 to an adapted,
right-continuous multiplicative functional Mt with left limits.
Moreover, for all ε > 0 small enough we have the key estimate

∣Mε,t ∣ ≤ exp(−1
2 ∫

t

0
r(p)(Xs)ds−∫

t

0
κ(p)(Xs)dλs) , t > 0. (2.5)

Now, as before let ω0 ∈Ap
a (M), so that ωt = e−

1
2 t∆pω0 ∈ Ap

a (M) is
the solution to (1.4). Then a simple application of Itô’s formula
to the process Mε,tω

†
T−t(X̃t), 0 ≤ t ≤ T , yields in the limit ε → 0 the

following fundamental Feynman-Kac formula.
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Theorem 2.1. [dL1, Theorem 5.2] Under the conditions above,

ω
†
t (x̃0) =Ex̃0(Mtω

†
0(X̃t)). (2.6)

Equivalently,
ωt(x0) =Ex0(MtVtω0(Xt)), (2.7)

where Vt is the (reversed) stochastic parallel transport acting on
differential forms.

An important consequence of this result is the following se-
migroup domination property for e−

1
2 t∆p .

Theorem 2.2. Under the conditions above, assume that Rp ≥ c1

and Bp ≥ c2, where c1,c2 > −∞. Then there exist C1 > 0 and C2 > −∞
such that

∣e−
1
2 t∆p ∣ ≤C1e−C2t , t > 0. (2.8)

Proof. From (2.5) we have

∣Mt ∣ ≤ exp(−(1
2

c1+c2))t) .

Since Vt is an isometry, the result follows from (2.7).

3 The proof of Theorem 1.3

In this section we present the proof of Theorem 1.3. We start
with an useful integral identity.

Proposition 3.1. Let ω and ξ be compactly supported absolute
p-forms on X . Then, for any t > 0,

(e−
1
2 t∆pω −ω,ξ)

p
= −1

2 ∫
t

0
∫

X
⟨e−

1
2 τ∆pω,∆pξ ⟩dXdτ. (3.1)
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Proof. We compute:

(e−
1
2 t∆pω −ω,ξ)

p
= ∫

X
⟨e−

1
2 t∆pω −e−

1
2 0∆p ,ξ ⟩dX

= ∫
t

0
∫

X
⟨∂τe−

1
2 τ∆pω,ξ ⟩dXdτ

(1.4)= −1
2 ∫

t

0
∫

X
⟨∆pe−

1
2 τ∆pω,ξ ⟩dXdτ

(1.3)= −1
2 ∫

t

0
∫

X
⟨e−

1
2 τ∆pω,∆pξ ⟩dXdτ,

as desired.

We now take a sequence of smooth, compactly supported
functions φi on X such that 0 ≤ φi ≤ φi+1 ≤ 1, φi → 1 as i→ +∞ and
∂φi/∂ν = 0 along Σ.
Proposition 3.2. If the conservative principle holds on A0(X)
then

ζi = ∫
+∞

0
e−t∫

X
K0(t; ⋅,y)φi(y)dXydt

is smooth and satisfies: a) ζi → 1; b) 1
2 ∆0ζi = φi − ζi → 0; and c)

∂ζi/∂ν = 0 along Σ.

Proof. First, we have

ζi(x)−1 = ∫
+∞

0
e−t∫

X
K0(t;x,y)(φi(y)−1)dXydt,

from which a) follows easily. Also,

1
2

∆0ζi(x) = ∫
+∞

0
e−t∫

X

1
2

∆0K0(t;x,y)φi(y)dXydt

= −∫
X
(∫

+∞

0
e−t ∂

∂ t
K0(t;x,y)dt)φi(y)dXy

= −∫
X
(−K0(0;x,y)+∫

+∞

0
e−tK0(t;x,y)dt)φi(y)dXy,
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which yields b). Finally, c) follows from the fact that the same
property holds for K0.

Now apply Proposition 3.1 with ω as in Definition 1.3 and
ξ = ζiη , where η is as in Definition 1.3. Since ∆pηi = (∆0ζi)η , we
get for each t > 0,

∣(e−
1
2 t∆pω −ω,ζiη)

p
∣ ≤ 1

2
∥∆0ζi∥L∞∥η∥L∞∫

t

0
∥e−

1
2 τ∆pω∥L1dτ

≤ C1

2
∥∆0ζi∥L∞∥η∥L∞∥ω∥L1∫

t

0
e−C2τdτ,

where we used (2.8). By sending i→ +∞, Proposition 3.2 guar-
antees that the righthand side goes to 0 and that ζiη → η , so we
obtain (1.6), which completes the proof of Theorem 1.3.
Remark 3. A simpler variant of this argument, which dispenses
with Proposition 3.2, yields a proof of Theorem 1.2. We first note
that by geodesic completeness we may assume that ∥dφi∥L∞ → 0.
Thus, using (3.1) with ω = f as in item (4) of Proposition 1.1 and
ξ = φi we have

(e−
1
2 t∆0 f − f ,φi)

0
= −1

2 ∫
t

0
∫

X
⟨e−

1
2 τ∆0 f ,∆0φi⟩dXdτ

= −1
2 ∫

t

0
∫

X
⟨e−

1
2 τ∆0 f ,d∗dφi⟩dXdτ

= −1
2 ∫

t

0
∫

X
⟨de−

1
2 τ∆0 f ,dφi⟩dXdτ

= −1
2 ∫

t

0
∫

X
⟨e−

1
2 τ∆1d f ,dφi⟩dXdτ,

where here we assume that t < e, the extinction time of Xt . It
follows that
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∣(e−
1
2 t∆0 f − f ,φi)

0
∣ ≤ 1

2
∥dφi∥L∞∫

t

0
∥e−

1
2 τ∆1d f ∥L1dτ

≤ C1

2
∥dφi∥L∞∥d f ∥L1∫

t

0
e−

1
2C2τdτ, (3.2)

where we used Theorem 2.2 with p= 1. By sending i→+∞ we then
recover item (4) in Proposition 1.1 for some t > 0, which proves
Theorem 1.2.
Remark 4. Assume that c1,c2 > 0 so that C2 > 0 in Theorem 2.2
(with p = 1). By sending t →+∞ (3.2) and using (1.5) we get

∣(ΠH0
a

f − f ,φi)0
∣ ≤ C1

2
∥dφi∥L∞∥d f ∥L1∫

+∞

0
e−

1
2C2tdτ.

so by taking i→+∞ we end up with

(ΠH0
a

f − f ,1)
0
= 0.

But ΠH0
a

f is harmonic and hence constant. Thus, if vol(X) = +∞
then ΠH0

a
f = 0. But this leads to ∫X f dX = 0 for any such f , a con-

tradiction. Hence, we have seen that if the Ricci tensor and the
shape operator are both uniformly bounded from below by a pos-
itive constant then (X ,g) has finite volume. This is the analogue
of Bonnet-Myers theorem in this setting.

4 The spin conservative principle

Assume that X as above is spin and fix a spin structure.
In [dL1, Section 5] we proved a Feynman-Kac formula for the
semigroup e−

1
2 tD2

associated to the Dirac Laplacian D2, where D

is the Dirac operator acting on spinors associated to a metric g

on X . This formula was established under the assumption that
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the conservative principle holds on A0 and by imposing suitable
boundary conditions on spinors along Σ, which include the chi-
larity and the MIT bag boundary conditions. As a consequence,
a semigroup domination result for e−

1
2 tD2

can be derived if we
assume further that the scalar curvature s on X and the mean
curvature H on Σ are both uniformly bounded from below. Thus,
the following result can be proved by using the obvious variant
of the argument leading to Theorem 1.3.

Theorem 4.1. Let (X ,g) be spin and assume that the conserva-
tive property holds on A0(X). Assume also that both s and H

are uniformly bounded from below. Then the spin conservative
principle holds for (X ,g) in the sense that

(e−
1
2 tD2

ψ,ϕ) = (ψ,ϕ),

where ψ and ϕ are spinors satisfying any of the boundary con-
ditions mentioned above, ψ is compactly supported, ϕ is L2 har-
monic and bounded and ( ,) is the standard L2 pairing for spinors.
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Abstract: The aim of this paper is to prove that a compact
almost Ricci soliton with null Cotton tensor is isometric to a
standard sphere provided one of the following conditions holds:
the second symmetric function associated to the Schouten ten-
sor is constant and positive; two consecutive symmetric func-
tions associated to the Schouten tensor are non null multiple or
some symmetric function associated to the Schouten tensor is
constant and the Schouten tensor is positive.

1 Introduction

The concept of almost Ricci soliton was introduced by Pigola et
al. in [17], where essentially they modified the definition of a
Ricci soliton by permitting to the parameter λ to be a variable
function. More precisely, we say that a Riemannian manifold
(Mn, g) is an almost Ricci soliton if there exist a complete vector
field X and a smooth soliton function λ ∶Mn→R satisfying

Ric+ 1
2
LX g = λg, (1.1)

†The authors were partially supported by CNPq-Brazil 93
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where Ric and L stand for the Ricci curvature tensor and the Lie
derivative, respectively. We shall refer to this equation as the
fundamental equation of an almost Ricci soliton (Mn,g,X ,λ). We
say that an almost Ricci soliton is shrinking, steady or expand-
ing provided λ > 0, λ = 0 or λ < 0, respectively, otherwise we say
that it is indefinite. When X = ∇ f for some smooth function f on
Mn, we say that it is a gradient almost Ricci soliton. In this case
identity (1.1) becomes

Ric+∇2 f = λg, (1.2)

where ∇2 f stands for the Hessian of f . Further, an almost Ricci
soliton is trivial provided X is a Killing vector field, otherwise
it will be called a non-trivial almost Ricci soliton. We point out
that when X is a Killing vector field and n ≥ 3, we have that M

is an Einstein manifold since Schur’s lemma ensures that λ is
constant.

We highlight that Ricci solitons also correspond to self-simil-
ar solutions of Hamilton’s Ricci flow, for more details about Ricci
soliton see e.g. [8]. In this perspective Brozos-Vázquez, García-
Río and Valle-Regueiro [6] observed that some proper gradient
Ricci almost solitons correspond to self-similar solutions of the
Ricci-Bourguignon flow, which is a geometric flow given by

∂

∂ t
g(t) = −2(Ric(t)−kR(t)g(t)),

where k ∈R and R stands for the scalar curvature. This flow can
be seen as an interpolation between the flows of Ricci and Yam-
abe. For more details on Ricci-Bourguignon flow we recommend
[10].

94



Almost Ricci Solitons with Null Cotton Tensor

It is important to emphasize that the round sphere does not
admit a (nontrivial) Ricci soliton structure. However, Barros
and Ribeiro Jr [3] showed an explicit example of an almost Ricci
soliton on the standard sphere. For this reason, it is interest-
ing to know if, in the compact case, this is the unique exam-
ple with non-constant soliton function λ . In this sense, Bar-
ros and Ribeiro Jr [3] proved that a compact gradient almost
Ricci soliton with constant scalar curvature must be isometric
to a standard sphere. Afterward, Barros, Batista and Ribeiro
Jr [1] proved that every compact almost Ricci soliton with con-
stant scalar curvature is gradient. In [5], Costa, Brasil and
Ribeiro Jr showed that under a suitable integral condition, a
4-dimensional compact almost Ricci soliton is isometric to the
standard sphere S4. While Ghosh [12] was able to prove that if a
compact K-contact metric is a gradient almost Ricci soliton, then
it is isometric to a unit sphere. We recall that Barros, Batista
and Ribeiro Jr [2] proved that under a suitable integral con-
dition a locally conformally flat compact almost Ricci soliton is
isometric to a standard sphere Sn. For more details see, for in-
stance, [1], [2], [12], [15] and [19].

When M is a compact manifold the Hodge-de Rham decom-
position theorem (see for instance [20]) asserts that X can be de-
composed as a sum of a gradient of a function h and a divergence-
free vector field Y , i.e.

X = ∇h+Y,

where divY = 0. From now on we consider h the function given by
this decomposition.

Henceforth we denote by Mn, n ≥ 3, a compact connected ori-
ented manifold without boundary. Now we remember some ba-
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sic facts about symmetric functions. Let A be the Schouten ten-
sor and σk(A) be the symmetric functions associated to A defined
as follows

det(I+ tA) =
n

∑
k=0

σk(A)tk.

Since A is symmetric, then (n
k)Sk(A) = σk(A) coincides with the k-

th elementary symmetric polynomial of the eigenvalues λi(A) of
A, i.e.,

σk(A) = σ(λ1(A), . . . ,λn(A)) = ∑
i1<⋯<ik

λi1(A)⋯λik(A), (1.3)

for more details about symmetric functions see for instance [14].
It should be emphasized that the assumption of constant scalar
curvature is equivalent to require that the trace of the Schouten
tensor is constant. Indeed, if we denote by A the Schouten ten-
sor, then trA = n−2

2(n−1)R, where R stands for the scalar curvature
of M. Since nS1(A) = trA, this is in turn equivalent to require
that the first symmetric function of A is constant. Inspired by
the historical development on the study of compact almost Ricci
soliton. In this paper, we investigate which geometric implica-
tion has the assumption that the second symmetric function S2

associated to the Schouten tensor is constant and positive on a
compact almost Ricci soliton. More precisely, we have the fol-
lowing result.

Theorem 1.1. Let (Mn,g,X ,λ) be a non-trivial compact oriented
almost Ricci soliton such that the Cotton tensor is identically
zero. Then, Mn is isometric to a standard sphere Sn provided that
one of the next condition is satisfied:

1. S2(A) is constant and positive.
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2. Sk(A) is nowhere zero on M and Sk+1(A) = cSk(A), where c ∈
R/{0}, for some k = 1,⋯,n−1.

3. Ric ≥ R
n g, with R > 0, and ∫M Sk(A)∆h ≥ 0 for some 2 ≤ k ≤ n−1.

4. Sk(A) is constant for some k = 2,⋯,n−1, and A > 0.

We highlight that the symmetric functions associated to the
Schouten tensor were used by Hu, Li and Simon [14] to study
locally conformally flat manifolds. By assuming that the Weyl
tensor vanishes, then the conclusion of item 4 in Theorem 1.1
follows directly from Theorem 1 obtained in [14]. In this direc-
tion, we point out that item 1 and item 4 of Theorem 1.1 improve
Theorem 1 in [14] for compact almost Ricci solitons under the
hypothesis of Cotton tensor identically zero.

Recently Catino, Mastrolia and Monticelli [9] obtained an
important classification for gradient Ricci soliton admitting a
fourth-order vanishing condition on the Weyl tensor. More pre-
cisely, they showed that any n-dimensional n≥ 4 gradient shrink-
ing Ricci soliton with fourth order divergence-free Weyl tensor
div4W = 0, is either Einstein, or a finite quotient of Nn−k ×R, k >
0 the product of a Einstein manifold Nn−k with the Gaussian
shrinking soliton Rk. We remark that

div4(W) =Wi jkl;ik jl,

where the indexes after the comma are the covariant deriva-
tives. We highlight that in general the condition of divergence
free of a tensor does not imply that the tensor is null, for ex-
ample, CP2 is an Einstein manifold with Fubini-Study metric,
hence its Cotton tensor is null, since the Cotton satisfies ∇lWi jkl =
n−3
n−2

Ci jk, we have that the Weyl tensor is harmonic. However,
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CP2 is not locally conformally flat. This example shows that
harmonic Weyl tensor does not imply locally conformally flat-
ness. In this direction, we get the following interesting result
about the Cotton tensor of a compact oriented manifold without
boundary.
Theorem 1.2. Let (M,g) be a compact oriented manifold without
boundary and C its be the Cotton tensor. Suppose that divC = 0,
then C = 0.

It is important to emphasizes that the previous Theorem al-
lows us to suppose divC = 0 instead of C in the Theorem 1.1. This
result has an other interesting consequences, , recently Lopes
in [18] proved that the CPE conjecture is true provided that
divC = 0, and by Theorem 1.2 this hypothesis implies imediatly
that C = 0, then one can conclude that the CPE conjecture is true
by applying Theorem 1.2 in [9].

The paper is organized as follows: in Section 2 we present
some basic notations and definitions; subsection 2.2 is devoted to
define Newton transformations associated to a symmetric (0,2)
tensor and to compute the divergence of such transformations
whereas in subsection 2.3 we establish some integral formu-
lae for compact oriented almost Ricci soliton associated to the
Schouten operator. In Section 3 we prove our main result as
an application of the integral formulae obtained in the previous
section.
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2 Preliminaries

2.1 Notations

Let (Mn,g) be a smooth, n-dimensional Riemannian manifold
with metric g. We denote by Rm(X ,Y)Z the Riemann curvature
operator defined as follows

Rm(X ,Y)Z = ∇X∇Y Z−∇Y∇X Z−∇[X ,Y ]Z,

and we also denote by Ric(X ,Y) = tr(Z→Rm(Z,X)Y) the Ricci ten-
sor, and R= tr(Ric) the scalar curvature. We have the well known
formula

(divRm)(X ,Y,Z) = ∇X Ric(Y,Z)−∇Y Ric(X ,Z). (2.1)

Let A = Ric− R
2(n−1)g denote the Schouten tensor, which is a (0,2)

symmetric tensor. The Weyl tensor is given by

Rm =W + 1
n−2

(A⊙g), (2.2)

where ⊙ means the Kulkarni-Nomizu product defined by the fol-
lowing formula

(α⊙β)i jkl = αilβ jk +α jkβil −αikβ jl −α jlβik, (2.3)

where α,β are (0,2) tensor. Finally we define the Cotton tensor
as follows

Ci jk = ∇iA jk −∇ jAik. (2.4)

It is well known that

∇lWi jkl =
n−3
n−2

Ci jk. (2.5)
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From identities (2.4) and (2.5) we see that for n ≥ 4 if the Weyl
tensor vanishes, then the Cotton tensor also vanishes. We also
see that when n = 3 the Weyl tensor always vanishes, but the
Cotton tensor does not vanish in general. We say that a mani-
fold has harmonic Weyl tensor provided that divW = 0, where div

means the divergence of the tensor. By (2.5) we also have that
for n ≥ 4, the Cotton tensor is identically zero, if and only if, the
Weyl tensor is harmonic.

We define (divC) jk = ∇iCi jk the divergence of the Cotton ten-
sor. We also define the second order divergence-free Weyl tensor
condition div2(W) =Wi jkl;ik and the fourth order divergence-free
Weyl tensor div4(W) =Wi jkl;ik jl.

2.2 Newton transformations

Let T be a symmetric (0,2) tensor and σk(T) be the symmetric
functions associated to T defined as follows

det(I+ sT) =
n

∑
k=0

σk(T)sk,

where σ0 = 1. Since T is symmetric, then (n
k)Sk(T) = σk(T) co-

incides with the k-th elementary symmetric polynomial of the
eigenvalues λi(T) of T , i.e.,

σk(T) = σ(λ1(T), . . . ,λn(T)) = ∑
i1<⋯<ik

λi1(T)⋯λik(T), 1 ≤ k ≤ n. (2.6)

Introduce the Newton transformations Pk(T) ∶X(M)→X(M),
arising from the operator T , by the following inductive law

P0(T) = I, Pk(T) = (n
k
)Sk(T)I−T Pk−1(T), 1 ≤ k ≤ n (2.7)
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or, equivalently,

Pk(T) = (n
k
)Sk(T)I−( n

k−1
)Sk−1(T)T +⋯+(−1)k−1(n

1
)S1(T)T k−1

+(−1)kT k.

Using the Cayley-Hamilton theorem we get Pn(T) = 0.

Note that Pk(T) is a self-adjoint operator that commutes with
T for any k. Furthermore, if {e1, . . . ,en} is an orthonormal frame
on TpM diagonalizing T , then

(Pk(T))p(ei) = µi,k(T)pei, (2.8)

where

µi,k(T) = ∑
i1<⋯<ik,i j≠i

λi1(T)⋯λik(T) = ∂σk+1

∂xi
(λ1(T), . . . ,λn(T)).

The divergence of Pk(T) is defined as follows

dPk(T) = tr(∇Pk(T)) =
n

∑
i=1
∇eiPk(T)(ei),

where {e1, . . . ,en} is a local orthonormal frame on M. Our aim is
to compute the divergence of Pk(T). The following definition is
important in the sequel. Define the tensor D by

Di jk = ∇iTjk −∇ jTik. (2.9)

Note that when T is the Ricci tensor, then by equation (2.1) D =
divRm, and when T is the Schouten tensor, then D is just the
Cotton tensor.
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Lemma 2.1. Let Pk(T) be the Newton transformations associated
with T above defined and let {e1, . . . ,en} be a local orthonormal
frame on M. Then, for all Z ∈ X(M), the divergence of Pk(T) are
given recursively as

dP0(T) = 0

⟨dPk(T),Z⟩ = −⟨T(dPk−1(T)),Z⟩−
n

∑
i=1

D(ei,Z,Pk−1(T)ei),
(2.10)

or equivalently

⟨dPk(T),Z⟩ =
k

∑
j=1

n

∑
i=1

(−1) jD(ei,T j−1Z,Pk− j(T)ei). (2.11)

In particular we have the following.
Corollary 2.1. If D = 0, then the Newton transformations are
divergence free: dPk(T) = 0 for each k.

2.3 Integral Formulae

Lemma 2.2. Let (M,g,X ,λ) be a compact oriented almost Ricci
soliton. For each k, the following integral formula holds:

∫
M
⟨dPk(A),X⟩dVg+ck∫

M
((S1(A)+ 1

n
∆h)Sk(A)−Sk+1(A))dVg = 0.

(2.12)

Note that when the Cotton tensor vanishes Corollary 2.1 im-
plies that

∫
M
⟨dPk(A),X⟩dVg = 0. (2.13)

Therefore, we obtain the next corollary.
Corollary 2.2. Let (M,g,X ,λ) be a compact oriented almost Ricci
soliton such that the Cotton tensor vanishes. Then,
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∫
M
((S1(A)+ 1

n
∆h)Sk(A)−Sk+1(A))dVg = 0. (2.14)

3 Proof of the Main Results

Remark 5. Before presenting the proofs of the results, we recall
that the symmetric functions satisfy Newton’s inequalities:

Sk(A)Sk+2(A) ≤ S2
k+1(A) for 0 ≤ k < n−1, (3.1)

which is a generalized Cauchy-Schwarz inequality. Moreover, if
equality occurs for k = 0 or 1 ≤ k < n with Sk+2(A) ≠ 0, then λ1(A) =
λ2(A) = . . . = λn(A). As an application, provided that λk(A) > 0 for
1 ≤ k ≤ n, we obtain Gårding’s inequalities

S1 ≥ S
1
2
2 ≥ S

1
3
3 ≥⋯ ≥ S

1
n
n . (3.2)

Here equality holds, for some 1 ≤ k < n, if and only if, λ1(A) =
λ2(A) = . . . = λn(A). Note that (3.2) implies that S

k+1
k

k ≥ Sk+1 for
1 ≤ k < n. For a proof see for instance [13] Theorem 51, p. 52
or Proposition 1 in [7].

3.1 Proof of Theorem 1.1

Proof. In item 1 we suppose that S2(A) is constant and positive.
Thereby, choosing k = 2 in (2.14) we obtain

∫
M
((S1(A)+ 1

n
∆h)S2(A)−S3(A))dVg = 0. (3.3)

Since S2(A) is constant we deduce

∫
M
(S2(A)S1(A)−S3(A))dVg = 0. (3.4)
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On the other hand,
S2

1(A)−S2(A) ≥ 0, (3.5)

by Newton’s inequality (3.1). Moreover, equality in (3.5) holds,
if and only if, λ1(A) = ⋯ = λn(A), which means that A is umbilical
(a multiple of g). In this case it is easy to check that

A = (n−2)R
2n(n−1)g. (3.6)

We know from (3.5) that S2
1(A) ≥ S2(A) > 0, then S1(A) does not

vanish, this means that either S1(A) < 0 or S1(A) > 0. Now we
prove that S2(A)S1(A)−S3(A) is positive or negative, according to
the sign of S1(A).

Indeed, from (3.1) we get S2
2(A)−S1(A)S3(A) ≥ 0. Supposing

S1(A) > 0 we obtain

S2(A)S1(A)−S3(A) ≥ S2(A)S1(A)− S2
2(A)

S1(A) =
S2(A)
S1(A)

(S2
1(A)−S2(A)) ≥ 0.

(3.7)

Analogously, if S1(A) < 0 then S2(A)S1(A)−S3(A) ≤ 0. In both
cases S2(A)S1(A)−S3(A) has a sign. Using this fact together with
equation (3.4), we get S2(A)S1(A)−S3(A) = 0, and hence equality
in (3.1), obtaining identity (3.6). Therefore (Mn,g) is an Einstein
manifold and we are in position to apply Corollary 1 in [1] to
conclude that (Mn,g) is isometric to a standard sphere Sn.

Proceeding, in item 2 we assume that Sk(A) is nowhere zero
on M and Sk+1(A) = cSk(A), where c ∈R/{0}, for some k = 1,⋯,n−1.

Thus we can use Corollary 2.2 to infer

∫
M
((S1(A)+ 1

n
∆h)cSk(A)−cSk+1(A))dVg = 0 (3.8)
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and

∫
M
((S1(A)+ 1

n
∆h)Sk+1(A)−Sk+2(A))dVg = 0. (3.9)

By hypothesis Sk+1(A) = cSk(A), whence using (3.9) and (3.8) we
deduce

∫
M
(cSk+1(A)−Sk+2(A))dVg = 0. (3.10)

Using once more that Sk+1(A) = cSk(A) we invoke inequality (3.1)
to get Sk(A)(cSk+1(A) − Sk+2(A)) ≥ 0. Using a similar argument
used in the previous case we conclude that M is Einstein, which
finishes the proof.
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From geometric analysis to classical geometry:
15 years talking about geometry with Professor

Pessoa Lima

Newton L. Santos†

Dedicated to my friend, Prof. Barnabé Pessoa Lima on occasion of his

60th birthday.

Abstract: In this note we present some of the joint work devel-
opped with Professor Pessoa Lima. The main themes we worked
togehter are related to the geometry of p-laplacian operator on
manifolds and translation surfaces.

1 Introduction

When we arrived, in the year of 2002, in Teresina to begin our
activities as a Professor at the Universidade Federal do Piauí -
UFPI, there was just one doctor in Geometry in the department
of Mathematics of that Institution, Professor Barnabé Pessoa
Lima. Pessoa Lima’s research area, focused on Omori-Yau Max-
imum Principle and Lr operators and had not apparent ties to
the area of my PhD, Global Geometry of Manifolds and Com-
parison Theorems. I was actually uncomfortable with that sit-
uation because it was clear for me the importance of stablish-

†The author was partially supported by Capes-Brazil 109
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ing and working in partnership, mainly because we were living
away from large research centers. We trully searched for con-
tact points in our areas but we didnot achieved many advances.
Nevertheless, all these efforts became responsible for the great
mutual friendship and admiration we develop.

Shortly after, with several teachers approved in public ten-
der for Departmento of Mathematics of UFPI, the team of re-
searchers in Geometry increased. Between 2007 and 2008 I fin-
ished my postdoctoral studies under the supervision of Profes-
sor Levi Lopes de Lima, Universidade Federal do Ceará - UFC.
It was fruitful year of learning and particularly special year be-
cause it brought in its bag new knowledge acquired. In addition
to the techniques learned with Prof Lopes de Lima, subjects re-
lated to the research themes of Professors José Fábio Bezerra
Montenegro and Gregorio Pacelli Bessa. From these themes I
suggested to Professor Pessoa Lima that we could work with the
p-laplacian operator on manifolds and find results and eigen-
value estimates similar to those related to the laplacian opera-
tor. Together with Fábio Montenegro, we obtained a series of in-
teresting results [19], theorems 2.1, 2.2, 2.4 and 2.5. Later, in a
partnership with Professor Pessoa Lima, using oscillation tech-
niques [20], we obtained the theorems 2.6 and 2.7. These results
will be presented in subsection 2.1. Several questions remained
open to problems of eigenvalue with the p-laplacian, for exam-
ple, to obtain estimates for the first eigenvalue for Steklov’s
problem and for the Robin problem.

Another important and interesting topic that I had the op-
portunity to interact with Prof Pessoa Lima was when I was
invited to join the team formed by Professors Juscelino Pereira
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Silva, Paulo Alexandre Araujo Sousa and Barnabé Pessoa Lima
for the study of translational hypersurfaces. Translational sur-
faces form a rich class of surfaces that allow the elaboration of
numerous questions each of which contribute with extremely in-
teresting solutions and examples of hypersurfaces. These re-
sults will be presented in subsection 2.2.

2 Statement of results

2.1 The p-laplacian operator

The Laplace-Beltrami operator on a riemannian manifold (M,g),
its spectral theory and the relations between its first eigenvalue
and geometrical data of the manifold, such as curvatures, di-
ameter, injectivity radius, volume, has been extensively studied
in the recent mathematical literature. In the last few years,
another operator, called p-laplacian, arising from problems of
glaceology, non-newtonian fluids, nonlinear elasticity, and well-
known in problems of Nonlinear Partial Differential Equations
came to the light of Geometry. Since then, geometers showed
that this singular operator exhibit some very interesting analo-
gies with the laplacian, for instance [29], [30] or [14].

Let (M,g) be a smooth riemannian manifold and Ω ⊂ M a
domain. For 1 < p <∞, the p-laplacian on Ω is defined by

△p (u) = −div[∥∇u∥p−2(∇u)] (2.1)

this operator appears naturally from the variational problem as-
sociated to the energy functional

Ep ∶ W1,p
0 (Ω) →R given by Ep(u) = ∫

Ω

∥∇u∥p dΩ
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where, as usual, W1,p
0 (Ω) denotes the Sobolev space given by

the closure of C∞(Ω) functions compactly supported in Ω, for
the norm

∥u∥p
1,p = ∫

Ω

∣u∣p dΩ+∫
Ω

∥∇u∥p dΩ

Observe that, when p = 2, △2 is just the Laplace-Beltrami oper-
ator. We are interested in the nonlinear eigenvalue problem

△p u+λ ∣u∣p−2u = 0 (2.2)

Since solutions for this problem, for arbitrary p ∈ (1,∞) are only
locally C1,α (exceptions for the case p = 2), they must be described
in the sense of distribution, that is, u ∈W1,p

0 (Ω), not identically 0

is an eigenfunction, associated to the eigenvalue λ , if

∫
Ω

∥∇u∥p−2g(∇u,∇φ) dΩ = λ ∫
Ω

∣u∣p−2uφ dΩ

for any test function φ ∈ C∞0 (Ω).

The spectral set, specp(M), of eigenvalues of (2.2) is an un-
bounded subset of [0,∞), as quoted in [29] (see also [23]) whose
infimum infspecp = µ1,p(Ω) is an eigenvalue. It is also known (see
[29]) that the first eigenvalue is simple and the first eigenfunc-
tion radial for geodesic balls on space-forms.

Actually, on Euclidian domains, an argument based on a ver-
sion of the Ljusternik-Schnirelman principle, An Lê (2005), in
[17] shows not only for the Dirichlet nonlinear eigenvalue prob-
lem, but also for Neumann and some other interesting classes
of non-linear eigenvalue problems associated to the p-laplacian
that, for bounded domains, Ω in Euclidian space, Rn one has:

i. There exists a nondecreasing sequence of nonnegative eigen-
values obtained by the Ljusternik-Schnirelman principle, (λn)n,
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tending to ∞ as n→∞ (though it is not known whether there is
or not a non Ljusternik-Schnirelman eigenvalue).

ii. The first eigenvalue λ1 is simple and only eigenfunctions as-
sociated with λ1 do not change sign.

iii. The set of eigenvalues is closed.

iv. The first eigenvalue λ1 is isolated.

In An Lê’s article, results due to Lindqvist 1995 [23], Anane
and Tsouli 1996 [2], and Azorero and Alonso 1987 [1] are natu-
rally extended to a wider class of problems.

It is interesting to point out that an investigation on the
variational methods used in [17] can be easily extended to the
setup of domains on Riemannian manifolds. More precisely, if
Ω is a bounded domain with smooth boundary in a Riemannian
manifold then conclusions [i] to [iv] above hold.

Now, let Ω ⊂ M a domain. The p-fundamental tone of Ω, de-
noted by µ

∗
p (Ω) is defined as follows:

µ
∗
p (Ω) = inf{∫Ω

∥∇ f ∥p dΩ

∫Ω ∣ f ∣p dΩ
; f ∈W1,p

0 , f ≠ 0}

when Ω is a domain with compact closure and nonempty piece-
wise smooth boundary ∂Ω, then µ

∗
p (Ω) coincides with the first

eigenvalue of the eigenvalue problem with Dirichlet condition,
u∣∂Ω = 0, by Rayleigh’s theorem.

Observe that if Ω1 ⊂Ω2 are bounded domains, then µ
∗
p (Ω1) ≥

µ
∗
p (Ω2) ≥ 0. Thus one may obtain the p-fundamental tone µ

∗
p (M)

of an open riemannian manifold (i.e., complete noncompact) as
the limit

µ
∗
p (M) = lim

r→∞
µ
∗
p (Br(q))
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where Br(q) is the geodesic ball of radius r centered at q ∈M.

When p = 2 the p-laplacian is simply the laplacian and the
p-fundamental tone is simply called the fundamental tone. In-
teresting estimates on the fundamental tone for the Laplace-
Beltrami operator on a riemannian manifold have been obtained
by Gregório P. Bessa and the second author (see, for instance [3]
and [4]). This paper presents an attempt to extend their varia-
tional argument to the p-laplacian.

Following closely [3] and [4] we introduce a geometric invari-
ant associated to certain spaces of vector fields that will be used
to give lower bounds for the fundamental tone for p-laplacian.
Definition 2.1. Let Ω ⊂ M be a domain with compact closure in
a smooth riemannian manifold (Mn,g). Let X(Ω) be the set of all
smooth vector fields, X , on Ω with sup norm ∥X∥∞ = supΩ ∥X∥ <∞
(where ∥X∥ = g(X ,X)1/2) and infΩ divX > 0. Define c(Ω) by

c(Ω) ∶= sup{ infΩ divX
∥X∥∞

; X ∈X(Ω)} (2.3)

As remarked in [3] X(Ω) is a nonvoid set of smooth vector
fields on Ω

With this definition at hand we obtained (in [19]) the following
result:
Theorem 2.1. Let Ω ⊂ M be a domain (∂Ω ≠ ∅) in a riemannian
manifold, M. Then

µ
∗
p (Ω) ≥ c(Ω)p

pp > 0 (2.4)

where c(Ω) is the constant given in (2.3)

To present the second variational estimate we need to intro-
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duce some preliminary definitions (see [4]) which will allow us
to deal with divergence of vector fields in a weak sense.
Definition 2.2 (Weak divergence). Let (M,g) be a riemannian
manifold and X ∈L1

loc(M) (in the sense that ∥X∥ ∈ L1
loc(M)) A func-

tion h ∈ L1
loc(M) is said to be a weak divergence of X , denoted by

h =DivX if for every φ ∈ C∞0 (M) it holds

∫
M

φh dM = −∫
M

g(∇φ ,X) dM (2.5)

We denote by W1,1(M), the set of vector fields of M possessing
weak divergence.

If X ∈W1,1(M) and f ∈ C∞(M) then f X ∈W1,1(M) with

Div( f X) = g(∇ f ,X)+ f DivX .

In particular for f ∈ C∞0 (M) we have that

∫
M

Div( f X) dM = ∫
M
[g(∇ f ,X)+ f Div(X)] dM = 0 (2.6)

With these notations fixed we have [19]
Theorem 2.2. Let (M,g) be a Riemannian manifold. Then the
following estimate holds

µ
∗
p (M) ≥ sup{inf

Ω
((1− p)∥X∥q+Div(X)), X ∈W1,1(M)} (2.7)

When M is a Hadamard manifold, Mckean in [31], obtained
an interesting bound for the fundamental tone for the laplacian
(in our case, p = 2):
Theorem 2.3 (Mckean). Let M be an n-dimensional, complete
noncompact, simply connected riemannian manifold with sec-
tional curvature K ≤ −c2 < 0, then
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λ
∗(M) ≥ (n−1)2c2

4
.

As simple consequence of Theorem 2.1, we obtain a general-
ization of Mckean theorem
Theorem 2.4 (Generalized Mckean [19]). Let M be an n-dimens-
ional, complete noncompact, simply connected riemannian man-
ifold with sectional curvature K ≤ −c2 < 0, then

µ
∗
p (M) ≥ (n−1)pcp

pp .

In particular, when p = 2 this is Mckean theorem.

Contrary to the Laplace operator, the p-laplacian has not
been proved to be discrete, even for Euclidean domains Ω ⊂ Rn

(as remarked in [28]). There are few results related to the spec-
trum of such operator. For instance, Lindqvist 1995, in [23], de-
scribes the first and the second eigenvalues for the p-laplacian.
We would like to obtain other invariants which might provide
us with some additional information relating the geometry of
the manifold and its spectral structure. An interesting spec-
tral invariant on M associated to the Laplace-Beltrami operator
is the essential spectrum of M and the greatest lower bound of
the essential spectrum of M, λ

ess
1 (M) = lim j→∞λ1(M −K j), where

K1 ⊂K2 ⊂ . . . is any exhaustion of M through compact subsets - this
limit being independent on the exhaustion (see [5]). Due to the
difficulties in the understanding the spectrum of the p-Laplace
operator, we shall define its essential p-first eigenvalue, as

µ
ess
p (M) ∶= lim

j→∞
µ1,p(M−K j), (2.8)

where K1 ⊂ K2 ⊂ . . . is any exhaustion of M through compact sub-
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sets (more generally, we can define in a similar way its essential
p-kth eigenvalue). With respect to essential spectrum we prove
if θ(M) is the exponential volume growth of M defined by

θ(M) = limsup
r→∞

1
r

log(Vr(x0)) (2.9)

where Vr(x0) is the volume of the geodesic ball Br(x0), then we
get a Brooks-type theorem (see [5])
Theorem 2.5. If the volume of M is infinity, then µ

ess
1,p(M) ≤ θ(M)p

pp .

By the end of the year 2010 Professor Pessoa Lima told me
to go to his office and called my attention to a paper of do Carmo
and Zhou 1999 ([10]) where the technique of ODE of oscillation
were used to obtain estimates for the first eingenvalue. As it
is usual, he presented the interesting main results and showed
how natural those results could be generalized to the setting of
p-laplacian problems.

Those discussions turned into the paper ([20]) were we ex-
tend results obtained by Manfredo P. do Carmo and Detang Zhou
([10]), on estimation of the first eigenvalues for the Laplacian on
complement of domains, precisely, we extend theorems 2.1 and
3.1 of [10]. The main tool used there is an oscilation theorem and
the relationship between a Liouville equation and the associated
Ricatti equation. Such a theorem can be naturally extended to
the setup of the p-Laplacian:

Let p > 1 and denote Φ(s) = ∣s∣p−2s. Below, p and q will repre-

sent conjugate exponents, that is
1
p
+ 1

q
= 1

Consider the Liouville type equation

(v(t)Φ(x′(t)))′+λv(t)Φ(x(t)) = 0. (2.10)
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This equation is intimately related to the following Ricatti equa-
tion:

y′ = λv(t)+(p−1)v(t)1−qyq (2.11)

Indeed, if x(t) is a positive solution for (2.10), one set

y(t) ∶= −v(t)Φ(x′(t))
Φ(x(t)) (2.12)

then, the first derivative of (2.12) gives:

y′(t) = −(v(t)Φ(x′(t)))′
Φ(x(t)) + v(t)Φ(x′(t))Φ

′(x(t))
Φ2(x(t))

= λv(t)+ v(t)Φ(x′(t))(p−1)x(t)p−2x′(t)
Φ2(x(t))

= λv(t)+(p−1)v(t) ∣x
′(t)∣p

∣x(t)∣p

= λv(t)+(p−1)v(t)(∣x
′(t)∣p−1)

p
p−1

(∣x(t)∣p−1)
p

p−1

= λv(t)+(p−1) yq

v(t)q−1

where, in the second equality we used equation (2.10).

We say that the equation (2.10) is oscillatory if a solution
x(t) for (2.10) has zeroes in [T,∞) for any T ≥ T0 (that is x(t) has
zeroes for arbitrarily large t). It is a classical result (see for in-
stance [13]) that if one solution has arbitrarily large zeroes then,
any other solution will also possess arbitrarily large zeroes, that
is to be oscillatory is a characteristic of the equation and not to
the particular solution.

Our main oscillation result is [20]:
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Theorem 2.6 ([20], compare with theorem 2.1 [10]). Let v(t) be
a positive continuous function on [T0,+∞), and define

V(t) ∶= ∫
t

T0

v(s) ds, and θV ∶= lim
t→∞

logV(t)
t

If the limit
lim
t→∞

V(t) = ∫
∞

T0

v(s) ds = +∞

Then, equation (2.10) is oscillatory provided that

(a) λ > 0 and θV = 0

or else

(b) λ > cp

pp and θV ≤ c

As a particular case of item (a), if λ > 0 and V(t) ≤Atc, for certain
positive constants, A, c, then

θV = lim
t→∞

logV(t)
t

≤ lim
t→∞

logAtc

t
= lim

t→∞
( logA

t
+ c logt

t
) = 0

And, as a particular case of item (b), if λ > cp

pp and V(t) ≤ Aect ,

then

θV = lim
t→∞

logV(t)
t

≤ lim
t→∞

logAect

t
= lim

t→∞
( logA

t
+ ct

t
) = c.

Let (Mn,g) be an open (that is complete, noncompact) Rie-
mannian manifold and fix some base point p ∈ M. Denote by
v(r) ∶= Area(∂Br(p)) the area of the geodesic sphere of radius r

centered at p. Put

V(r) ∶=Vol(Br(p)) = ∫
r

0
v(r) dr and set θ(M) ∶= lim

t→∞

logV(t)
t

.
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Notice that the number θ(M) does not depend on the base point,
p, so it is an invariant of the manifold that captures the growth
behavior M off compact sets, since for any fixed R > 0 holds

θ(M) = lim
t→∞

log(V(R)+A(R,t))
t

= lim
t→∞

logA(R,t)
t

where A(R,t) =V(t)−V(R). If M is a manifold with Vol(M) = +∞
then, for any T0 > 0, one has ∫ +∞T0

v(r) dr = +∞. Our main theorem
is the following:
Theorem 2.7 ([20], compare with theorem 3.1 of [10]). Let (M,g)
be an open manifold with infinite volume, Vol(Mn) = +∞. If Ω ⊂
M is an arbitrary compact set, denote by λ1,p(M −Ω) be the first
eigenvalue for the p-Laplacian on M−Ω

(a) If M has subexponential growth, that is θ(M) = 0,
then λ1,p(M−Ω) = 0.

(b) If θ(M) ≤ β , for some β > 0, then λ1,p(M−Ω) ≤ β
p

pp .

Remark 6. As particular cases for this theorem we have:

1. If Vol(Br(p)) ≤ crβ for some positive constants c,β > 0 and
r ≥ r0, then λ1,p(M−Ω) = 0.

2. Let (Mn,o,g,k) denote a pointed Riemannian manifold, with
a base point, o ∈M, and k ∶ [0,∞)→R a positive, nonincreas-
ing function, with

b0(k) ∶= ∫
∞

0
sk(s) ds <∞

such that the radial Ricci curvatures (that is, the Ricci cur-
vatures along radial direction, ∂r, tangent to minimal uni-
tary geodesics departing from the base point) satisfy the
bound
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RicM(∂r∣p) ≥ −(n−1)k(dist(o, p)), for all p ∈M

we say that such a manifold has asymptotically nonnega-
tive radial Ricci curvature, thus since for such a manifold
one has V(r) ≤ eb0(k)rn (see [34]), it follows, by the previous
case that λ1,p(M−Ω) = 0.

3. If Vol(Br(p)) ≤ ceβ t , then λ1,p(M−Ω) ≤ β
p

pp .

We end up this section, setting the following question: what can
be said about the spectrum for the following p-laplace problems
on domains Ω of a manifold Mn (possibly with boundary ∂M ≠∅):

No-flux problem

NF(Ω) ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−△p u = λ ∣u∣p−2u in Ω,

u = constant on ∂Ω,

∫∂Ω
∣∇u∣p−2 ∂u

∂η
= 0.

Neumann problem

N(Ω) ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−△p u = λ ∣u∣p−2u in Ω,

∂u
∂η

= 0 on ∂Ω.

Robin problem

R(Ω) ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−△p u = λ ∣u∣p−2u in Ω,

∣∇u∣p−2 ∂u
∂η

+β ∣u∣p−2u = 0 on ∂Ω.
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Steklov problem

D(Ω) ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

△pu = ∣u∣p−2u in Ω,

∣∇u∣p−2 ∂u
∂η

+λ ∣u∣p−2u = 0 on ∂Ω.

2.2 Translational hypersurfaces

I was introduced to this quite interesting topic thanks to the
very kind invitation from the friends Barnabé Lima, Juscelino
Silva and Paulo A. Sousa who were studing some nice general-
izations of the problem of obtaining examples of classes of min-
imal hypersurfaces. Although my contribution was rather in-
significant, it brough me lots of new ideas related to this theme,
opening a number of possibilities of new works related to trans-
lational surfaces. I am sincerely indebted for being invited to
join the group. The discussion below is the introduction of our
paper Translation Hypersurfaces with Constant Sr Curvature in
the Euclidean Space [22]

It is well known that translation hypersurfaces are very im-
portant in Differential Geometry, providing an interesting class
of constant mean curvature hypersurfaces and minimal hyper-
surfaces in a number of spaces endowed with good symmetries
and even in certain applications in Microeconomics. There are
many results about them, for instance, Chen et al. 2003 [8],
Dillen et al. 1991 [9], Inoguchi et al. 2012 [16], Lima et al. 2014
[21], Liu 1999 [24], López 2011 [25], López and Moruz 2015 [26],
López and Munteanu 2012 [27], Seo 2013 [33] and Chen 2011
[7], for an interesting application in Microeconomics.

Scherk 1835 [32] obtained the following classical theorem:
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Let M ∶= {(x,y,z) ∶ z = f (x)+g(y)} be a translation surface in R3, if
is minimal then it must be a plane or the Scherk surface defined
by

z(x,y) = 1
a

ln ∣cos(ay)
cos(ax)∣ ,

where a is a nonzero constant. In a different aspect,Liu1999 [24]
considered the translation surfaces with constant mean curva-
ture in 3-dimensional Euclidean space and Lorentz-Minkowski
space and Inoguchi et al. 2012 [16] characterized the minimal
translation surfaces in the Heisenberg group Nil3, and López
and Munteanu [27], the minimal translation surfaces in Sol3.

The concept of translation surfaces was also generalized to
hypersurfaces of Rn+1 by Dillen et al. 1991 [9], who obtained
a classification of minimal translation hypersurfaces of the (n+
1)-dimensional Euclidean space. A classification of the trans-
lation hypersurfaces with constant mean curvature in (n+ 1)-
dimensional Euclidean space was made by Chen et al. 2003 [8].

The absence of an affine structure in hyperbolic space does
not permit to give an intrinsic concept of translation surface
as in the Euclidean setting. Considering the half-space model
of hyperbolic space, López 2011 [25], introduced the concept of
translation surface and presented a classification of the minimal
translation surfaces. Seo 2013 [33] has generalized the results
obtained by Lopez to the case of translation hypersurfaces of the
(n+1)-dimensional hyperbolic space.

Definition 2.3. We say that a hypersurface Mn of the Euclidean
space Rn+1 is a translation hypersurface if it is the graph of a
function given by

F(x1, . . . ,xn) = f1(x1)+ . . .+ fn(xn)
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where (x1, . . . ,xn) are cartesian coordinates and fi is a smooth
function of one real variable for i = 1, . . . ,n.

Now, let Mn ⊂Rn+1 be an oriented hypersurface and λ1, . . . ,λn

denote the principal curvatures of Mn. For each r = 1, . . . ,n, we
can consider similar problems to the above ones, related with
the r-th elementary symmetric polynomials, Sr, given by

Sr = ∑
1≤i1<⋯<ir≤n

λi1⋯λir

In particular, S1 is the mean curvature, S2 the scalar curvature
and Sn the Gauss-Kronecker curvature, up to normalization fac-
tors. A very useful relationship involving the various Sr is given
in the Proposition 1, Caminha 2006 [6].

Recently, some authors have studied the geometry of trans-
lational hypersurfaces under a condition in the Sr curvature,
where r > 1. Namely, Leite 1991 [18] gave a new example of a
translation hypersurface of R4 with zero scalar curvature. Lima
et al. 2014 presented a complete description of all translation
hypersurfaces with zero scalar curvature in the Euclidean space
Rn+1 and Seo 2013 [33] proved that if M is a translation hyper-
surface with constant Gauss-Kronecker curvature GK in Rn+1,
then M is congruent to a cylinder, and hence GK = 0.

The main results we obtained in the paper [22] were a com-
plete classification of translation hypersurfaces of Rn+1 with Sr =
0 (that is, the r-minimal translation hypersurfaces). It is re-
markable that one solution is a generalized Sherk hypersurface.
Precisely:
Theorem 2.8 (Lima et al. 2016 [22]). Let Mn (n ≥ 3) be a trans-
lation hypersurface in Rn+1. Then, for 2 < r < n, Mn has zero Sr
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curvature if, and only if, it is congruent to the graph of the fol-
lowing functions

• F(x1, . . . ,xn) =
n−r+1

∑
i=1

aixi+
n

∑
j=n−r+2

f j(x j)+b,

on Rn−r+1 × Jn−r+2 ×⋯× Jn, for some intervals Jn−r+2, . . . ,Jn, and ar-
bitrary smooth functions fi ∶ Ji ⊂ R → R. Which defines, after a
suitable linear change of variables, a vertical cylinder, and

• A generalized periodic Enneper hypersurface given by

F(x1, . . . ,xn) =
n−1

∑
k=n−r

√
β

ak
ln

RRRRRRRRRRRRRRRRRRRR

cos(− an−r . . .an−1

σr−1(an−r, . . . ,an−1)
√

βxn+bn)

cos(ak
√

βxk +bk)

RRRRRRRRRRRRRRRRRRRR

+
n−r−1

∑
i=1

aixi+c

on Rn−r−1 × In−r ×⋯× In, where a1, . . . ,an−r, . . . ,an−1, bn−r, . . . ,bn and
c are real constants where an−r, . . . ,an−1 and σr−1(an−r, . . . ,an−1) are

nonzero, β = 1+
n−r−1

∑
i=1

a2
i , Ik (n−r ≤ k ≤ n−1) are open intervals defined

by the conditions ∣ak
√

βxk +bk∣ < π/2 while In is defined by

∣− an−r . . .an−1

σr−1(an−r, . . . ,an−1)
√

βxn+bn∣ < π/2.

Theorem 2.9 (Lima et al. 2016 [22]). Any translation hyper-
surface in Rn+1 (n ≥ 3) with Sr constant, for 2 < r < n, must have
Sr = 0.

Finally, we observe that, when one considers the upper half-
space model of the (n+ 1)-dimensional hyperbolic space Hn+1,
that is,
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Rn+1
+ = {(x1, . . . ,xn,xn+1) ∈Rn+1 ∶ xn+1 > 0}

endowed with the hyperbolic metric ds2 = 1
x2

n+1
(dx2

1+ . . .+dx2
n+1)

then, unlike in the Euclidean setting, the coordinates x1, . . . ,xn

are interchangeable, but the same does not happen with the co-
ordinate xn+1 and, due to this observation, López 2011 [25] and
Seo 2013 [33] considered two classes of translation hypersur-
faces in Hn+1: A hypersurface M ⊂ Hn+1 is called a translation

hypersurface of type I (respectively, type II ) if it is given by an
immersion X ∶U ⊂Rn→Hn+1 satisfying

X(x1, . . . ,xn) = (x1, . . . ,xn, f1(x1)+ . . .+ fn(xn))

where each fi is a smooth function of a single variable. Respec-
tively, in case of type II,

X(x1, . . . ,xn) = (x1, . . . ,xn−1, f1(x1)+ . . .+ fn(xn),xn)

Seo proved
Theorem 2.10 (Theorem 3.2, Seo 2013 [33]). There is no mini-
mal translation hypersurface of type I in Hn+1.

and with respect to type II surfaces he proved
Theorem 2.11 (Theorem 3.3, Seo 2013). Let M ⊂H3 be a mini-
mal translation surface of type II given by the parametrization
X(x,z) = (x, f (x)+g(z),z). Then the functions f and g are as fol-
lows:

f (x) = ax+b,

g(z) =
√

1+a2∫
cz2

√
1−c2z4

dz,

where a, b, and c are constants.
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We emphasize that the result proved by Seo, Theorem 3.2 of Seo
2013, implies that our result (Theorem 2.9) is not valid in the
hyperbolic space context.

We finish this short presentation setting some questions related
to translation hypersurfaces:

Question I Obtain a complete classification of r-minimal trans-
lation hypersurfaces in Lorentzian spaces;

Question II Define translation surfaces in Lie groups and ob-
tain a classification of minimal translation surfaces in cer-
tain classes of these spaces.

Question III Is it possible to define translation surfaces in ho-
mogeneous spaces? If the answer is positive, obtain exam-
ples or classification.
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Spectral estimates for the LΦ-operator and the
p-Laplacian

G. Pacelli Bessa† and Luquesio M. Jorge

In honor of Professor Barnabé Pessoal Lima on the occasion of his 60th

birthday.

Abstract: The purpose of this article is to present part of the
work of Professor Barnabé Pessoa Lima on eigenvalue estimates
on manifolds. It is based on the articles [7] and [27]. The work
presented here shows clever and creative insights that is his
“trademark” when discussing mathematics.

1 Introduction

Let M be a connected Riemannian manifold, possibly incom-
plete, and let △ = div ○∇ be the Laplace-Beltrami operator on
acting on C∞

0 (M), the space of smooth functions with compact
support. When M is geodesically complete, △ is essentially self-
adjoint, thus there is a unique self-adjoint extension to an un-
bounded operator, denoted by△, whose domain is the set of func-
tions f ∈ L2(M) so that △f ∈ L2(M), see [15], [16] and [34]. If M

is not complete we will always consider the Friedrichs extension
of △. The spectrum of △ denoted by σ(△) ⊂ [0,∞), is formed by

†Partially suported by CNPq and FUNCAP/CNPq/PRONEX 133
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all λ ∈R for which △+λ I is not injective or the inverse operator
(△+λ I)−1 is unbounded, [16]. Is well known that the bottom of
the spectrum infσ(M) is equal to the fundamental tone λ

∗(M)
and given by

λ
∗(M) = inf{∫M ∣∇ f ∣2

∫M f 2 ; f ∈C∞
0 (M)/{0}} .

The relations between the △-fundamental tone Riemannian
manifolds and their geometric invariants has been the subject to
an intensive research in the past 50 years. There is a huge lit-
erature on this subject, however we limit ourselves to quote the
classics [5], [6], [12] and references therein for a detailed pic-
ture. One can consider elliptic operators more general than the
Laplace-Beltrami operator. Indeed, let Ω⊂M be a connected sub-
set of a Riemannian manifold and Φ ∶Ω→ End(TΩ) be a smooth
symmetric and positive definite section of the bundle of all endo-
morphisms of TΩ. There exists a second order elliptic operator
associated to the section Φ, acting of smooth functions, namely
the operator LΦ( f ) = div(Φ ∇ f ), f ∈ C∞(Ω). This class of oper-
ators include the Laplace-Beltrami operator △, more precisely,
when Φ is the identity section then LΦ = △, is the Laplace oper-
ator. The LΦ-fundamental tone of Ω is defined by

λ
LΦ(Ω) = inf{∫Ω

∣Φ1/2∇ f ∣2

∫Ω f 2 ; f ∈C2
0(Ω)∖{0}} . (1.1)

The method developed in [9] for giving lower bounds for the △-
fundamental tone established was extended for self-adjoint el-
liptic operators LΦ by Bessa et al in [7]. There, they proved the
following theorem.
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Theorem 1.1 (Bessa-Jorge-Lima-Montenegro). Let Ω ⊂ M be a
domain in a Riemannian manifold M and let Φ ∶Ω→End(TΩ) be
a smooth symmetric and positive definite section of TΩ. Then the
LΦ-fundamental tone of Ω has the following lower bound

λ
LΦ(Ω) ≥ sup

X(Ω)
inf
Ω

[div(ΦX)− ∣Φ1/2X ∣2] . (1.2)

If Ω is bounded and with smooth boundary ∂Ω ≠ ∅ then we have
equality in (1.2).

λ
LΦ(Ω) = sup

X(Ω)
inf
Ω

[div(ΦX)− ∣Φ1/2X ∣2] . (1.3)

Where X(Ω) is the set of all smooth vector fields on Ω.

Recently, another operator, called p-Laplacian, arising from
problems on non-newtonian fluids, glaceology, nonlinear elastic-
ity, and in problems of nonlinear partial differential equations
came to light. For 1 < p <∞, the p-Laplacian on Ω is defined by

△p (u) = −div(∣∇u∣p−2(∇u)). (1.4)

The p-Laplacian appears naturally in the variational problem
associated to the energy functional Ep∶W 1,p

0 (Ω) →R given by

Ep(u) = ∫
Ω

∣∇u∣p dν , (1.5)

where W 1,p
0 (Ω) denotes the Sobolev space given by the closure of

C∞
0 (Ω) functions with compact support in Ω for the norm

∥u∥p
1,p = ∫

Ω

∣u∣p dν +∫
Ω

∣∇u∣p dν .
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Observe that, when p = 2, △2 is the Laplace-Beltrami opera-
tor. The interesting problem here is the non-linear “eigenvalue”
problem

△pu+λ ∣u∣p−2u = 0

The solutions for this problem, for arbitrary p ∈ (1,∞) must be
described in the sense of distributions, that is, u ∈W 1,p

0 (Ω)∖{0}
is an eigenfunction associated to the eigenvalue λ , if

∫
Ω

∣∇u∣p−2⟨∇u,∇φ⟩dν = λ ∫
Ω

∣u∣p−2uφ dν (1.6)

for any test function φ ∈C∞
0 (Ω). The smallest λ for which the

there is u ∈ W 1,p
0 (Ω) satisfying (1.6) is the p-fundamental tone

λ
∗
p (Ω) of Ω defined by

λ
∗
p (Ω) = inf{∫Ω

∣∇u∣pdν

∫Ω updν
,u ∈W 1,p

0 (Ω)∖{0}} . (1.7)

Definition 1.1. Let Ω ⊂ M be a open subset of a Riemannian
manifold M and vector field X ∈ L1

loc(χ(M)), in the sense that ∣X ∣ ∈
L1(Ω). A function h ∈ L1

loc(Ω) is said to be a weak divergence of X ,
denoted by h = divX if for every φ ∈C∞

0 (Ω) then

∫
Ω

hφ dν = −∫
Ω

⟨∇φ ,X⟩dν (1.8)

The weak divergence exists for almost every point of Ω. If X ∈
W1,1(Ω) and f ∈C1

0(Ω) then f X ∈W1,1(Ω) with Div( f X) = g(∇ f ,X)+
f DivX . In particular for f ∈C∞

0 (Ω) we have that

∫
M

Div( f X) dµ = ∫
M
[g(∇ f ,X)+ f Div(X)] dµ = 0 (1.9)

Definition 1.2. Let Ω be an open subset of a Riemannian man-
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ifold M. Let X(Ω) be the set of all smooth bounded vector fields
on Ω with infΩ divX > 0. Define c(Ω) by

c(Ω) ∶= sup{ infΩ divX
∥X∥∞

; X ∈X(Ω)}

B. Lima et al. in [27], proved the following two estimates,
Theorems 1.2 and 1.3 for the smallest “eigenvalue”λ

∗
p (Ω) of the

p-Laplacian.
Theorem 1.2 (Lima-Montenegro-Santos). Let Ω ⊂ M be an open
subset of a Riemannian manifold, M. Then

λ
∗
p (Ω) ≥ c(Ω)p

pp ⋅ (1.10)

Corollary 1.1 (Generalized Mckean). LetM be an n-dimensional,
complete noncompact, simply connected Riemannian manifold
with sectional curvature K ≤ −1 < 0, then

λ
∗
p (M) ≥ (n−1)p

pp .

When p = 2 this is the McKean theorem [28]. A second esti-
mate proven in [27] was the following version for the p-Laplacian
of the main result of [9].
Theorem 1.3 (Lima-Montenegro-Santos). Let Ω ⊂ M be an open
subset of a Riemannian manifold M. Then the following estimate
holds

λ
∗
p (M) ≥ sup

X∈χ(Ω)
{inf

Ω
((1− p)∣X ∣q+Div(X)) , X ∈W 1,1(M)} (1.11)

This article surveys the work of Barnabé Pessoa Lima on
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eigenvalue estimates. It is based on [7] and [27]. The main
results, Theorems (1.1), (1.2) and (1.3) has various geometric
applications we describe in the next sections.

2 Geometric applications of Theorem 1.1

Consider the linearized operator Lr of the (r+1)-mean curvature

Hr+1 = Sr+1/(
n

r+1
)

arising from normal variations of a hypersurface M immersed
into the (n+1)-dimensional simply connected space form Nn+1(c)
of constant sectional curvature c ∈ {1,0,−1} where Sr+1 is the (r+
1)-th elementary symmetric function of the principal curvatures
k1,k2, . . . ,kn. Recall that the elementary symmetric function of
the principal curvatures are given by

S0 = 1, Sr = ∑
i1<⋯<ir

ki1⋯kir , 1 ≤ r ≤ n. (2.1)

Letting A = −(∇η) be the shape operator of M, where ∇ is
the Levi-Civita connection of Nn+1(c) and η a globally defined
unit vector field normal to M, we can recursively define smooth
symmetric sections Pr ∶ M → End(TM), for r = 0,1, . . . ,n, called the
Newton operators, setting P0 = I and Pr = SrId−APr−1 so that Pr(x) ∶
TxM→ TxM is a self-adjoint linear operator with the same eigen-
vectors as the shape operator A. The operator Lr is the second
order self-adjoint differential operator

LPr( f ) = div(Pr∇ f ) (2.2)
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associated to the section Pr. However, the sections Pr may be
not positive definite and then the operators Lr may not be el-
liptic, see [29]. However, there are geometric hypothesis that
imply the ellipticity of Lr, see [11], [24], [4]. Here we will not
impose geometric conditions to guarantee ellipticity of the Lr,
except in corollary (2.2). Instead we will ask the ellipticity on
the set of hypothesis in the following way. It is known, see [23],
that there is an open and dense subset U ⊂M where the ordered
eigenvalues {µ

r
1(x) ≤ . . . ≤ µ

r
n(x)} of Pr(x) depend smoothly on x ∈U

and continuously on x ∈ M. In addition, the respective eigen-
vectors {e1(x), . . . ,en(x)} form a smooth orthonormal frame in a
neighborhood of every point of U . Set ν(Pr) = supx∈M{µ

r
n(x)} and

µ(Pr) = infx∈M{µ
r
1(x)}. Observe that if µ(Pr) > 0 then Pr is positive

definite, thus Lr is elliptic. The following definition of locally
bounded (r+1)-th mean curvature hypersurface is necessary in
order to state the next result.

Definition 2.1. An oriented immersed hypersurface ϕ ∶M↪N of
a Riemannian manifold N is said to have locally bounded (r+1)-
th mean curvature Hr+1 if for any p ∈ N and R > 0, the number
hr+1(p,R) = sup{∣Sr+1(x)∣ = a(n,r + 1) ⋅ ∣Hr+1(x)∣ ; x ∈ ϕ(M) ∩BN(p,R)}
is finite. Here BN(p,R) ⊂ N is the geodesic ball of radius R and
center p ∈N.

The next result generalizes in some aspects the main ap-
plication of [8]. There the first and fourth authors give lower
bounds for△-fundamental tone of domains in submanifolds with
locally bounded mean curvature in complete Riemannian mani-
folds.
Theorem 2.1. Let ϕ ∶ M ↪ Nn+1(c) be an oriented hypersurface
immersed with locally bounded (r+1)-th mean curvature Hr+1 for

139



G. P. Bessa and L. M. Jorge

some r ≤ n−1 and with µ(Pr) > 0. Let BNn+1(c)(p,R) be the geodesic
ball centered at p ∈Nn+1(c) with radius R and

Ω ⊂ ϕ
−1(BNn+1(c)(p,R))

be a connected component. Then the Lr-fundamental tone λ
Lr(Ω)

of Ω has the following lower bounds.

i. For c = 1 and 0 < R < cot−1 [(r+1) ⋅hr+1(p,R)
(n− r) ⋅ infΩ Sr

] we have that

λ
Lr(Ω) ≥ 2 ⋅ 1

R
[(n− r) ⋅cot[R] ⋅ inf

Ω
Sr −(r+1) ⋅hr+1(p,R)] . (2.3)

ii. For c ≤ 0, hr+1(p,R) ≠ 0 and 0 < R < (n− r) ⋅ infΩ Sr

(r+1) ⋅hr+1(p,R) we have

that

λ
Lr(Ω) ≥ 2 ⋅ 1

R2 [(n− r) ⋅ inf
Ω

Sr −(r+1) ⋅R ⋅hr+1(p,R)] . (2.4)

iii. If c ≤ 0, hr+1(p,R) = 0 and R > 0 we have that

λ
Lr(Ω) ≥ 2(n− r) infΩ Sr

R2 (2.5)

Definition 2.2. Let ϕ ∶ M ↪ N be an isometric immersion of a
closed Riemannian manifold into a complete Riemannian mani-
fold N. For each x ∈N, let r(x) = supy∈M distN(x,ϕ(y)). The extrinsic
radius Re(M) of M is defined by

Re(M) = inf
x∈N

r(x).

Moreover, there is a point x0 ∈ N called the barycenter of ϕ(M) in
N such that Re(M) = r(x0).
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Corollary 2.1. Let ϕ ∶M↪BNn+1(c)(R) ⊂Nn+1(c) be a complete ori-
ented hypersurface with bounded (r+1)-th mean curvature Hr+1

for some r ≤ n− 1, R chosen as in Theorem (2.1). Suppose that
µ(Pr) > 0 so that the Lr operator is elliptic. Then M is not closed.
Corollary 2.2. Let ϕ ∶ M ↪ Nn+1(c)2, c ∈ {1,0,−1} be an oriented
closed hypersurface with Hr+1 > 0. Then there is an explicit con-
stant Λr =Λr(c, infM Sr, supM Sr+1) > 0 such that the extrinsic radius
Re(M) ≥Λr.

i. For c = 1, Λr = cot−1 [(r+1) ⋅ supM Sr+1

(n− r) ⋅ infΩ Sr
].

ii. For c ∈ {0,−1}, Λr =
(n− r) ⋅ infΩ Sr

(r+1) ⋅ supΩ Sr+1
.

Remark 7. The hypothesis Hr+1 implies that H j > 0 and L j are
elliptic for j = 0,1, . . .r, see [4], [11] or [24]. Thus in fact in fact
have that Re ≥max{Λ0,⋯,Λr}.
Remark 8. Jorge and Xavier, (Theorem 1 of [22]), proved the
inequalities of Corollary (2.2) when r = 0 for complete submani-
folds with scalar curvature bounded from below contained in a
compact ball of a complete Riemannian manifold. Moreover, for
c = −1 their inequality is slightly better. These inequalities should
be also compared with a related result proved by Fontenele-Silva
in [17].
Corollary 2.3. Let ϕ ∶ M ↪ Sn+1(1), be an oriented closed hyper-
surface with µ

r
1(M) > 0 and Hr+1 = 0. Then the extrinsic radius

Re(M) ≥ π/2.
Remark 9. An interesting question is: Is it true that any closed
oriented hypersurface with µ

r
1(M) > 0 and Hr+1 = 0 intersect every

great circle? For r = 0 it is true and it was proved by Frankel [18].

2If c = 1 suppose that Nn+1(c) is the open hemisphere of Sn+1
+ .
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We now consider immersed hypersurfaces ϕ ∶ M ↪ Nn+1(c)
with Lr and Ls elliptic. We can compare the Lr and Ls funda-
mental tones of a domain Ω ⊂ M. In particular we can compare
with its L0-fundamental tone.
Theorem 2.2. Let ϕ ∶M ↪Nn+1(c) be an oriented n-dimensional
hypersurface M immersed into the (n+1)-dimensional simply con-
nected space form of constant sectional curvature c and µ(Lr) > 0

and µ(Ls) > 0, 0 ≤ s, r ≤ n−1. Let Ω ⊂ M be a domain with compact
closure and piecewise smooth non-empty boundary. Then the Lr

and Ls fundamental tones satisfies the following inequalities

λ
Lr(Ω) ≥ µ(Pr)

ν(Ps)
⋅λ Ls(Ω), (2.6)

where λ
Ls(Ω) and λ

Lr(Ω) are respectively the first Ls-eigenvalue
and Lr-eigenvalue of Ω. From (2.6) we have in particular that

ν(r) ⋅λ△(Ω) ≥ λ
Lr(Ω) ≥ µ(r) ⋅λ△(Ω) (2.7)

2.1 Closed eigenvalue problem

Let M be a closed hypersurface of a simply connected space form
Nn+1(c). Similarly to the eigenvalue problem of closed Rieman-
nian manifolds, the interesting problem is what bounds can one
obtain for the first nonzero Lr-eigenvalue λ

Lr
1 (M) in terms of the

geometries of M and of the ambient space. Upper bounds for
the first nonzero △-eigenvalue or even for the first nonzero Lr-
eigenvalue, r ≥ 1 have been obtained by many authors in contrast
with lower bounds that are rare. For instance, Reilly [30] ex-
tending earlier result of Bleecker and Weiner [10] obtained up-
per bounds for λ

△
1 (M) of a closed submanifold M of Rm in terms of
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the total mean curvature of M. Reilly’s result applied to compact
submanifolds of the sphere M ⊂Sm+1(1), this later viewed as a hy-
persurface of the Euclidean space Sm+1(1) ⊂ Rm+2 obtains upper
bounds for λ

△
1 (M), see [2]. Heintze,[20] extended Reilly’s result

to compact manifolds and Hadamard manifolds M. In particu-
lar for the hyperbolic space Hn+1. The best upper bounds for the
first nonzero △-eigenvalue of closed hypersurfaces M of Hn+1 in
terms of the total mean curvature of M was obtained by El Soufi
and Ilias [32]. Regarding the Lr operators, Alencar, Do Carmo,
and Rosenberg [2] obtained sharp (extrinsic) upper bound the
first nonzero eigenvalue λ

Lr
1 (M) of the linearized operator Lr of

compact hypersurfaces M of Rm+1 with Sr+1 > 0. Upper bounds
for λ

Lr
1 (M) of compact hypersurfaces of Sn+1, Hn+1 under the hy-

pothesis that Lr is elliptic were obtained by Alencar, Do Carmo,
Marques in [1] and by Alias and Malacarne in [3] see also the
work of Veeravalli [35]. On the other hand, lower bounds for
λ

Lr
1 (M) of closed hypersurfaces M ⊂Nn+1(c) are not so well stud-

ied as the upper bounds, except for r = 0 in which case L0 =△. In
this paper we make a simple observation (Theorem 2.3) that to
obtain lower and upper bounds for the LΦ-eigenvalues (Dirich-
let or Closed eigenvalue problem) it is enough to obtain lower
and upper bounds for the eigenvalues of Φ and for the eigenval-
ues for the Laplacian in the respective problem. When applied
to the Lr operators (supposing them elliptic) we obtain lower
bounds for closed hypersurfaces of the space forms via Cheeger’s
lower bounds for the first △-eigenvalue of closed manifolds. Let
{µ1(x) ≤ . . . ≤ µn(x)} be the ordered eigenvalues of Φ(x). Setting
ν(Φ) = supx∈Ω{µn(x)} and µ(Φ) = infx∈Ω{µ1(x)} we have the follow-
ing theorem.
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Theorem 2.3. Let λ
LΦ(Ω) denote the LΦ-fundamental tone of Ω

if Ω is unbounded or ∂Ω ≠ ∅ and the first nonzero LΦ-eigenvalue
λ

LΦ

1 (Ω) if Ω is a closed manifold. Then λ
LΦ(Ω) satisfies the fol-

lowing inequalities,

ν(Φ,Ω) ⋅λ△(Ω) ≥ λ
LΦ(Ω) ≥ µ(Φ,Ω) ⋅λ△(Ω), (2.8)

where λ
△(Ω) is the △-fundamental tone of Ω or the first nonzero

△-eigenvalue of Ω.

Let M be a closed n-dimensional Riemannian manifold, in
[13] Cheeger defined the following constant given by

h(M) = inf
S

voln−1(S)
min{voln(Ω1), voln(Ω2)}

, (2.9)

where S ⊂ M ranges over all connected closed hypersurfaces di-
viding M in two connected components, i.e. M =Ω1∪Ω2, Ω1∩Ω2 =
∅ such that S = ∂Ω1 = ∂Ω2 and he proved that the first nonzero
△-eigenvalue λ

△
1 (M) ≥ h(M)2/4.

Corollary 2.4. Let ϕ ∶ M ↪ Nn+1(c), c ∈ {1,0,−1}3 be an oriented
closed hypersurface with Hr+1 > 0. Then the first nonzero Lr-eigen-
value of M has the following lower bound

λ
Lr
1 (M) ≥ µ(Lr) ⋅

h2(M)
4

.

3 Proof of Theorem 1.1 and its geometric
applications

Let Ω be an arbitrary domain, X be a smooth vector field on

3If c = 1 suppose that Nn+1(c) is the open hemisphere of Sn+1
+ .
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Ω and f ∈ C∞
0 (Ω). The vector field f 2

ΦX has compact support
supp( f 2

ΦX) ⊂ supp( f ) ⊂ Ω. Let S be a regular domain containing
the support of f . We have by the divergence theorem that

0 = ∫
S

div( f 2
ΦX) = ∫

Ω

div( f 2
ΦX)

= ∫
Ω

[⟨∇ f 2,ΦX⟩+ f 2div(ΦX)]

and hence,

0 = ∫
Ω

[⟨∇ f 2,ΦX⟩+ f 2div(ΦX)]

≥ −2 ∫
Ω

[∣ f ∣ ⋅ ∣Φ1/2∇ f ∣ ⋅ ∣Φ1/2X ∣+div(ΦX) ⋅ f 2]

≥ ∫
Ω

[−∣Φ1/2∇ f ∣2− f 2 ⋅ ∣Φ1/2X ∣2+div(ΦX) ⋅ f 2] .

Therefore

∫
Ω

∣Φ1/2∇ f ∣2 ≥ ∫
Ω

[div(ΦX)− ∣Φ1/2X ∣2] f 2

≥ inf[div(ΦX)− ∣Φ1/2X ∣2]∫
Ω

f 2. (3.1)

By the variational formulation (1.1) of λ
Lr(Ω) this inequality

above implies that

λ
Lr(Ω) ≥ inf

Ω
[div(ΦX)− ∣Φ1/2X ∣2] . (3.2)

When Ω is a bounded domain with smooth boundary ∂Ω≠∅ then
λ

Lr(Ω) = λ
Lr
1 (Ω). This proof above shows that

λ
Lr
1 (M) ≥ inf

M
[div(ΦX)− ∣Φ1/2X ∣2] .
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Let v ∈C2(Ω)∩C0(Ω) be a positive first Lr-eigenfunction4 of Ω and
if we set X0 = −∇ log(v) we have that

div(ΦX0)− ∣Φ1/2X0∣2 = −div((1/v)Φ∇v)−(1/v2)∣Φ1/2∇v∣2

= (1/v2)⟨∇v,Φ∇v⟩−(1/v)div(Φ∇v)

−(1/v2)∣Φ1/2∇v∣2

= −(1/v)div(Φ∇v) = −Lr(v)/v = λ
L
1 (Ω).

This proves (1.3).

3.1 Proof of Theorem 2.1 and Corollaries 2.1, 2.2, 2.3

We start this section stating few lemmas necessary to construct
the proof of Theorem (2.1). The first lemma was proved in [21]
for the Laplace operator and for the Lr operator in [25] and [26].
We reproduce its proof to make the exposition complete.

Lemma 3.1. Let ϕ ∶M ↪Nn+1(c) be a complete hypersurface im-
mersed in (n+1)-dimensional simply connected space form Nn+1(c)
of constant sectional curvature c. Let g ∶Nn+1(c) →R be a smooth
function and set f =g○ϕ. Identify X ∈TpM with dϕ(p)X ∈Tϕ(p)ϕ(M)
then we have that

Lr f (p) = ∑n
i=1 µ

r
i Hessg(ϕ(p))(ei,ei)+Trace(APr)⟨∇g,η⟩. (3.3)

Proof: Each Pr is also associated to a second order self-adjoint
differential operator defined by ◻ f = Trace(Pr Hess( f )) see [14],
[19]. We have that

◻ f = Trace(Pr Hess( f )) = div(Pr∇ f )− trace(∇Pr)∇ f . (3.4)

4 v ∈C2(Ω)∩H0
1 (Ω) if ∂Ω is not smooth.
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Rosenberg [31] proved that when the ambient manifold is the
simply connected space form Nn+1(c) then Trace(∇Pr) ∇ ≡ 0, see
also [29]. Therefore Lr f = Trace(Pr Hess( f )). Using Gauss equa-
tion to compute Hess( f ) we obtain

Hess f (p)(X ,Y) =Hessg(ϕ(p))(X ,Y)+⟨∇g,α(X ,Y)⟩ϕ(p), (3.5)

where ⟨α(X ,Y),η⟩ = ⟨A(X),Y ⟩. Let {ei} be an orthonormal frame
around p that diagonalize the section Pr so that Pr(x)(ei)= µ

r
i (x)ei.

Thus
Lr f = ∑n

i=1⟨Pr Hess f (ei),ei⟩

= ∑n
i=1⟨Hess f (ei),µr

i ei⟩

= ∑n
i=1 µ

r
i Hess f (ei,ei)

(3.6)

Substituting (3.5) into (3.6) we have that

Lr f = ∑n
i=1 µ

r
i Hessg(ei,ei)+⟨∇g,∑n

i=1 µ
r
i α(ei,ei)⟩

= ∑n
i=1 µ

r
i Hessg(ei,ei)+⟨∇g,α(∑n

i=1 Pr(ei),ei)⟩

= ∑n
i=1 µ

r
i Hessg(ei,ei)+Trace(APr)⟨∇g,η⟩

(3.7)

Here Hess f (X) =∇X∇ f and Hess f (X ,Y) = ⟨∇X∇ f ,Y ⟩. The next two
lemmas we are gong to present are well known and their proofs
are easily found in the literature thus we will omit them here.
Lemma 3.2 (Hessian Comparison Theorem). Let M be a com-
plete Riemannian manifold and x0,x1 ∈ M. Let γ ∶ [0, ρ(x1)] →M

be a minimizing geodesic joining x0 and x1 where ρ(x) is the dis-
tance function distM(x0,x). Let K be the sectional curvatures of M

and υ(ρ), defined below.
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υ(ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 ⋅coth(k1 ⋅ρ(x)), i f supγ K = −k2
1

1
ρ(x) , i f supγ K = 0

k1 ⋅cot(k1 ⋅ρ(x)), i f supγ K = k2
1 and ρ < π/2k1.

(3.8)

Let X = X⊥+XT ∈ TxM, XT = ⟨X ,γ ′⟩γ ′ and ⟨X⊥, γ
′⟩ = 0. Then

Hessρ(x)(X ,X) =Hessρ(x)(X⊥,X⊥) ≥ υ(ρ(x)) ⋅ ∥X⊥∥2. (3.9)

See [33] for a proof.
Lemma 3.3. Let p ∈M and 1 ≤ r ≤ n−1, let {ei} be an orthonormal
basis of TpM such that Pr(ei) = µ

r
i ei and A(ei) = kiei. Then

i. trace(Pr) = ∑n
i=1 µ

r
i = (n− r)Sr

ii. trace(APr) = ∑n
i=1 kiµ

r
i = (r+1)Sr+1

In particular, if the Newton operator Pr is positive definite then
Sr > 0.

To prove Theorem (2.1) set g ∶ B(p,R) ⊂ Nn+1(c) → R given by
g = R2 −ρ

2, where ρ is the distance function (ρ(x) = dist(x, p)) of
Nn+1(c). Setting f = g○ϕ we obtain by (3.3) that

Lr f =
n

∑
i=1

µ
r
i ⋅Hessg(ei,ei)+(r+1) ⋅Sr+1 ⋅ ⟨∇g,η⟩, (3.10)

since Trace(APr) = (r + 1) ⋅ Sr+1. Letting X = −∇ log f we have by
Theorem (1.1) that

λ
Lr(Ω) ≥ inf

Ω
(−Lr f / f )

= inf
Ω

{−1
g
[

n

∑
i=1

µ
r
i ⋅Hessg(ei,ei)+(r+1) ⋅Sr+1 ⋅ ⟨∇g,η⟩]} .
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Computing the Hessian of g we have that

Hessg(ei,ei) = ⟨∇ei∇g,ei⟩ = −2⟨∇eiρ∇ρ,ei⟩

= −2⟨∇ρ,ei⟩2−2ρ ⟨∇ei∇ρ,ei⟩

= −2⟨∇ρ,ei⟩2−2ρ Hessρ(ei,ei).

(3.11)

Therefore we have that

−Lr f
f

= 2
R2−ρ2 [

n

∑
i=1

µ
r
i [⟨∇ρ,ei⟩2+ρ Hessρ(ei,ei)]

+(r+1) ⋅Sr+1 ⋅ρ ⋅ ⟨∇ρ,η⟩]

Setting eT
i = ⟨∇ρ,ei⟩∇ρ and e⊥i = ei − eT

i , by the Hessian Compari-
son Theorem we have that

n

∑
i=1

µ
r
i [⟨∇ρ,ei⟩2+ρHessρ(ei,ei)] ≥

n

∑
i=1

µ
r
i [∥eT

i ∥2+ρ ⋅υ(ρ)∥e⊥i ∥2]

(3.12)
and

(r+1) ⋅Sr+1 ⋅ρ ⋅ ⟨∇ρ,η⟩ ≤ (r+1)R ⋅hr+1(p,R) (3.13)

From (3.12) and (3.13) we have that

λ
1(Ω) ≥ inf

Ω
(−Lr f / f )

≥ 2 ⋅ inf
Ω

{ 1
R2−ρ2 [

n

∑
i=1

µ
r
i [∥eT

i ∥2+ρ ⋅υ(ρ)∥e⊥i ∥2]

−(r+1) ⋅R ⋅hr+1(p,R)]}. (3.14)

If c ≤ 0 then ρ ⋅υ(ρ) ≥ 1 thus from (3.14) we have that
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λ
1(Ω) ≥ 2 ⋅ 1

R2 [inf
Ω

{
n

∑
i=1

µ
r
i [∥eT

i ∥2+∥e⊥i ∥2]}−(r+1) ⋅R ⋅hr+1(p,R)]

= 2 ⋅ 1
R2 [inf

Ω

n

∑
i=1

µ
r
i −(r+1) ⋅R ⋅hr+1(p,R)] (3.15)

= 2 ⋅ 1
R2 [(n− r) inf

Ω
Sr −(r+1) ⋅R ⋅hr+1(p,R)] .

If c > 0 then ρ ⋅υ(ρ) = ρ ⋅√c ⋅cot[√cρ] ≤ 1 thus from (3.14) we have
that

λ
1(Ω) ≥ 2 ⋅ 1

R2 [inf
Ω

{
n

∑
i=1

µ
r
i [∥eT

i ∥2+∥e⊥i ∥2] ρ ⋅
√

c ⋅cot[
√

cρ]}

−(r+1) ⋅R ⋅hr+1(p,R)]

= 2 ⋅ 1
R2 [inf

Ω
{

n

∑
i=1

µ
r
i ρ

√
ccot[

√
cρ]}−(r+1) ⋅R ⋅hr+1(p,R)]

= 2
R2 [(n− r) ⋅R ⋅

√
c ⋅cot[

√
cR] ⋅ inf

Ω
Sr −(r+1) ⋅R ⋅hr+1(p,R)] .

To prove the Corollaries (2.1) and (2.2), observe that the hy-
potheses µ(Pr)(M) > 0 (in Corollary 2.1) and Hr+1 > 0 (in Corollary
2.2) imply that the Lr is elliptic. If the immersion is bounded
(contained in a ball of radius R, for those choices of R) and M

is closed we would have by one hand that the Lr-fundamental
tone would be zero and by Theorem (2.1) that it would be pos-
itive. Then M can not be closed if the immersion is bounded.
On the other hand if M is closed a ball of radius R centered at
the barycenter of M could not contain M because the fundamen-
tal tone estimates for any connected component Ω ⊂ ϕ

−1(ϕ(M)∩
BNn+1(c)(p,R) is positive. Showing that M ≠ Ω. The corollary (2.3)
follows from item i. of Theorem (2.1) placing Sr+1 = 0.
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3.2 Proof of Theorem 2.2

Let ϕ ∶W ↪ Nn+1(c) be an isometric immersion of an oriented n-
dimensional Riemannian manifold W into a (n+1)-dimensional
simply connected space form of sectional curvature c. Let M ⊂W

be a domain with compact closure and piecewise smooth non-
empty boundary and suppose that the Newton operators Pr and
Ps, 0 ≤ s, r ≤ n−1 are positive definite when restricted to M. Let
µ(r) = µ(Pr,M), µ(s) = µ(Ps,M) and ν(r) = ν(Pr,M), ν(s) = ν(Ps,M).
Given a vector field X on M we can find a vector field Y on M such
that PrX = κ ⋅PsY , κ constant. Now

div(PrX)− ∣P1/2
r X ∣2 = κ ⋅div(PsY)−⟨PrX ,X⟩

= κ ⋅div(PsY)−κ
2⟨PsY,P−1

r PsY ⟩ (3.16)

= κ ⋅ [div(PsY)− ∣P1/2
s Y ∣2+∣P1/2

s Y ∣2−κ ⋅ ∣P−1/2
r PsY ∣2]

Consider {ei} be an orthonormal basis such that Prei = µ
r
i ei and

Psei = µ
s
i ei. Letting Y =∑n

i=1 yiei then

∣P1/2
s Y ∣2−κ ⋅ ∣P−1/2

r PsY ∣2 =
n

∑
i=1

µ
s
i y2

i −κ

n

∑
i=1

(µ
s
i )2

µr
i

y2
i

=
n

∑
i=1

µ
s
i y2

i [1−κ ⋅ µ
s
i

µr
i
] (3.17)

≥ 0, i f κ ≤ µ(r)
ν(s)

Combining (3.16) with (3.17) and by Theorem (1.1) we have that

λ
Lr(M) = sup

X
inf
M

div(PrX)− ∣P1/2
r X ∣2

≥ κ ⋅ sup
Y

inf
M

div(PsY)− ∣P1/2
s Y ∣2 = κ ⋅λ Ls(M),
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for every 0 < κ ≤ µ(r)
ν(s) . This proves (2.6).

3.3 Proof of Theorem 2.3

Recall that for any smooth symmetric section Φ ∶ Ω→ End(TΩ)
there is an open and dense subset U ⊂Ω where the ordered eigen-
values {µ1(x) ≤ . . . ≤ µn(x)} of Φ(x) depend smoothly on x ∈U and
continuously in all Ω. In addition, the respective eigenvectors
{e1(x), . . . ,en(x)} form a smooth orthonormal frame in a neigh-
borhood of every point of U , see [23]. Let f ∈ C2

0(Ω) ∖ {0} ( f ∈
C2(Ω) with ∫Ω f = 0) be an admissible function for (the closed
LΦ-eigenvalue problem if Ω is a closed manifold) the Dirichlet
LΦ-eigenvalue problem. It is clear that f is an admissible func-
tion for the respective △-eigenvalue problem. Writing ∇ f (x) =
∑n

i=1 ei( f )ei(x) we have that

∣Φ1/2∇ f ∣2(x) = ⟨Φ∇ f ,∇ f ⟩(x)

= ⟨
n

∑
i=1

µi(x)ei( f )ei,
n

∑
i=1

ei( f )ei⟩ (3.18)

=
n

∑
i=1

µi(x)ei( f )2(x).

From (3.18) we have that

ν(Φ,M) ⋅ ∣∇ f ∣2(x) ≥ ∣Φ1/2∇ f ∣2(x) ≥ µ(Φ,M) ⋅ ∣∇ f ∣2(x) (3.19)

and

ν(Φ,M) ⋅ ∫M
∣∇ f ∣2

∫M f 2 ≥ ∫M
∣Φ1/2∇ f ∣2

∫M f 2 ≥ µ(Φ,M) ⋅ ∫M
∣∇ f ∣2

∫M f 2 (3.20)

Taking the infimum over all admissible functions in (3.20) we
obtain (2.8).
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4 Proof of Theorem 1.2

Following [8] and [9] we shall introduce geometric invariants
associated to certain spaces of vector fields that will be used to
give lower bounds for the fundamental tone for p-laplacian. In
this direction we begin with

Definition 4.1. Let Ω ⊂ M be open subset of a smooth Rieman-
nian manifold M. Let X(Ω) be the set of all smooth vector fields,
X , on Ω with sup norm ∥X∥∞ = supΩ ∣X ∣ < ∞ and infΩ divX > 0. De-
fine c(Ω) by

c(Ω) ∶= sup{ infΩ divX
∥X∥∞

; X ∈X(Ω)} (4.1)

Let X ∈X(Ω) a smooth vector field and f ∈ C∞0 (Ω) any positive
function, then the vector field f pX has compact support in Ω. We
compute the divergence of f pX

0 = ∫
Ω

div( f pX) dν = ∫
Ω

[⟨∇( f p),X⟩+ f pdiv(X)] dν

= ∫
Ω

[p f p−1⟨∇ f ,X⟩+ f pdiv(X)] ν

≥ ∫
Ω

[−p∣ f ∣p−1∣∇ f ∣∣X ∣+ f pdiv(X)] ν

by the Cauchy-Schwartz inequality. That is

0 ≥ ∫
Ω

{− p∣ f ∣p−1∣∇ f ∣∣X ∣+ f pdiv(X)} ν (4.2)

The Young inequality states that for any α, β > 0

αβ ≤ α
p

p
+ β

q

q
, if

1
p
+ 1

q
= 1. (4.3)
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It implies that for any ε > 0

αβ ≤ α
p

pε p +
ε

q
β

q

q
. (4.4)

Apply the Young inequality (4.4) to the inequality (4.2), letting

α ∶= p∣∇ f ∣ and β ∶= ∣ f ∣p−1∣X ∣

to get

0 ≥ ∫
Ω

{− (p∣∇ f ∣)p

pε p − ε
q(∣ f ∣p−1∣X ∣)q

q
+ f pdiv(X)} ν

= ∫
Ω

{− pp−1

ε p ∣∇ f ∣p− ε
q∣X ∣q
q

∣ f ∣(p−1)q+ f pdiv(X)} ν

= ∫
Ω

{− pp−1

ε p ∣∇ f ∣p+(div(X)− ε
q∣X ∣q
q

)∣ f ∣p} ν

≥ − pp−1

ε p ∫
Ω

∣∇ f ∣p ν +( inf
Ω

div(X)− ε
q

q
sup

Ω

∣X ∣q)∫
Ω

∣ f ∣p ν

that is

pp−1

ε p ∫
Ω

∣∇ f ∣p ν ≥ ( inf
Ω

div(X)− ε
q

q
sup

Ω

∣X ∣q)∫
Ω

∣ f ∣p ν (4.5)

or else

∫
Ω

∣∇ f ∣p ν ≥ ε
p

pp−1 ( inf
Ω

div(X)− ε
q

q
sup

Ω

∣X ∣q)∫
Ω

∣ f ∣p ν (4.6)

When div(X) ≤ 0 on Ω, the previous inequality is trivial and does
not bring any interesting information. So we shall assume tac-
itly that div(X) ≥ 0 on Ω. Consider the function
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ψ(ε) = ε
p(A−Bε

q)

with A ≥ 0 and B > 0. We will look for the maximum this function
assumes as a function of A and B. This is a straightforward
calculation:

• ψ
′(ε) = ε

p−1[pA−(p+q)Bε
q].

• thus the zeroes of ψ
′ are given by

ε1 = 0 and ε2 = ( pA
(p+q)B

)
1/q

.

• ψ
′′(ε) = ε

p−2[p(p−1)A−(p+q)(p+q−1)Bε
q].

• calculating ψ
′′ on both ε1 and ε2 we get

ψ
′′(ε1) = 0 and ψ

′′(ε2) = −pqε
p−2
2 A ≤ 0.

• consequently ε2 is a maximum and the maximum value of
ψ is given by

ψ(ε2) = ( pA
(p+q)B

)
p/q qA

p+q
= qpp/qAp

(p+q)pBp/q
,

since 1+ p/q = p.

Letting A = infΩ div(X) and B = supΩ ∣X ∣q/q we observe that

max
ε

[ε
p( inf

Ω
div(X)− ε

q supΩ ∣X ∣q
q

)] = qp pp/q

(p+q)p

(infΩ div(X))p

supΩ ∣X ∣p

and consequently

1
pp−1 max

ε
[ε

p( inf
Ω

div(X)− ε
q supΩ ∣X ∣q

q
)] = 1

pp ( infΩ div(X)
supΩ ∣X ∣ )

p

(4.7)
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inserting the estimate (4.7) in (4.6) we get

∫
Ω

∥∇ f ∣p ν ≥ 1
pp ( infΩ div(X)

∣X ∣∞
)

p

∫
Ω

∣ f ∣p ν

≥ 1
pp

⎛
⎝

sup
X∈X(Ω)

infΩ div(X)
∣X ∣∞

⎞
⎠

p

∫
Ω

∣ f ∣p ν

and thus

∫
Ω

∣∇ f ∣p ν ≥ c(Ω)p

pp ∫
Ω

∣ f ∣p ν (4.8)

leading to the estimate for the fundamental tone

µ
∗
p (Ω) = inf{∫Ω

∣∇ f ∣p

∫Ω ∣ f ∣p ∶ f ∈W 1,p
+ (Ω)∖{0}} ≥ c(Ω)p

pp (4.9)

This concludes the proof of Theorem 1.2.

To prove McKean’s generalized Theorem 1.1 we take X =∇ρ,
the gradient of distance function from a point o and observe that
∣∇ρ ∣ = 1. On the other hand div(∇ρ) = △ρ. Now, since KM ≤ −c2 <
0 the laplacian comparison theorem implies that △ρ ≥ (n− 1)c.
Hence

(n−1)pcp

pp ≤ 1
pp (div(∇ρ)

∣∇ρ ∣ )
p

≤ c(M)p

pp ≤ λ
∗
p (M)

concluding the proof.

4.1 Geometric application of Theorem 1.2

Let B(o,r) be the geodesic ball of radius r and center o ∈ M of a
Riemannian n-manifold. Suppose that the radius satisfies

r <min{inj(o),π/2κ(r)},
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where κ(r) is the supremum of the sectional curvatures K(σ) of
all two dimensional planes σ ⊂ TxM, x ∈ B(o,r),

κ(r) = sup
B(o,r)

{K(σ),σ ⊂ TxM,x ∈ B(o,r)}.

If κ(r) ≤ 0 we assume that π/2κ(r) =∞. Let ρ ∶M →R be the dis-
tance function to the point o ∈ M. Set f ∶M → R given by f (x) =
ρ

q(x) = ρ(x)p/(p−1) and X = ∣∇ f ∣p−2∇ f . Since ∇ f = qρ
q−1∇ρ it fol-

lows that

X = (qρ
q−1)p−2qρ

q−1∇ρ = q(p−2)+1
ρ
(q−1)(p−2)+(q−1)∇ρ

= qp−1
ρ
(q−1)(p−1)∇ρ = qp−1

ρ∇ρ

thus ∣X ∣ ≤ qp−1R on the ball BR(o). Computing the divergence of
X we have

divX = div(qp−1
ρ∇ρ) = qp−1(⟨∇ρ,∇ρ⟩+ρ△ρ)

= qp−1(1+ρ△ρ)

≥ qp−1(1+(n−1)ρ(x)h′

h
(ρ(x)))

where h is the solution of the Cauchy problem h′′(t)+κ(t)h(t) = 0

for all t ∈ [0,r] with initial conditions h(0) = 0, h′(0) = 1.

Thus

λ
∗
p (BR(o)) ≥ (

infBR(o)div(X)
p∥X∥∞

)
p

≥ (
(1+(n−1) infBR(o)ρ(x)(h′/h)(ρ(x)))

pR
)

p

.
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Summarizing the discussion, we get the following generaliza-
tion of Theorem (4.1) of [8]

Theorem 4.1. Let M a n-dimensional Riemannian manifold and
B(o,r) a geodesic ball with radius r < min{in j(o),π/2κ(r)}. Then
the p-fundamental tone of B(0,r) has lower bound given by

λ
∗
p (BR(o)) ≥ (

infBR(o)div(X)
p∥X∥∞

)
p

≥ (
(1+(n−1) infBR(o)ρ(x)(h′/h)(ρ(x)))

pR
)

p

.

5 Proof of Theorem 1.3

Let X ∈W1,1(M) and f ∈C∞
0 (M) .

0 = ∫
M

div( f pX) dν = ∫
M
[⟨∇( f p),X⟩+ f pdiv(X)] dν

= ∫
M
[p f p−1⟨∇ f ,X⟩+ f pdiv(X)] dν

≥ ∫
M
[− p f p−1∣∇ f ∣∣X ∣+ f pdiv(X)] dν

≥ ∫
M
[−p( ∣∇ f ∣p

p
+ f (p−1)q∣X ∣q

q
)+ f pdiv(X)] dν

≥ −∫
M
∣∇ f ∣p dν +∫

M
(− p

q
∣X ∣q+div(X)) f p dν

≥ −∫
M
∣∇ f ∣p dν + inf

M
((1− p)∣X ∣q+div(X))∫

M
f p dν

where we have used the Young inequality ab ≤ ap

p
+ bq

q
for the
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pair a = ∣∇ f ∣ and b = f p−1∣X ∣ and the fact that the exponents p,q

are conjugate, that is (p−1)q = p. Thus we have

∫
M
∣∇ f ∣p dν ≥ inf

M
((1− p)∣X ∣q+div(X))∫

M
f p dν

or

∫M ∣∇ f ∣p dν

∫M f p dν
≥ inf

M
((1− p)∣X ∣q+div(X))

for any vector field X ∈W1,1(M), hence we obtain

∫M ∣∇ f ∣p dν

∫M f p dν
≥ sup

X∈W1,1(M)
inf
M

((1− p)∣X ∣q+div(X)) (5.1)

Thus

λ
∗
p (M) = inf

W 1,p
0 (M)

∫M ∣∇ f ∣p dν

∫M ∣ f ∣p dν
≥ sup

X∈W1,1(M)
inf
M

((1− p)∣X ∣q+div(X)) (5.2)

Let u be an eigenfunction associated to the least eigenvalue λ1,p,
that is

△pu = λ1,p(Ω)∣u∣p−2u

and consider the vector field

X = −∣∇u∣p−2∇u
∣u∣p−2u

(5.3)

calculating its norm and divergence we obtain

∣X ∣q = (∣∇u∣p−2

∣u∣p−1 ∣∇u∣)
q

= (∣∇u∣p−1

∣u∣p−1 )
q

= ∣∇u∣(p−1)q

∣u∣(p−1)q
= ∣∇u∣p

∣u∣p
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and

div(X) = −div(∣∇u∣p−2∇u
up−1 )

= −div(∣∇u∣p−2∇u)
up−1 −⟨∣∇u∣p−2∇u,∇ 1

u(p−1) ⟩

= △pu
∣u∣p−2u

+(p−1)u−p∣∇u∣p−2⟨∇u,∇u⟩

= µ1,p(Ω)+(p−1) ∣∇u∣p
up .

Gathering these results

(1− p)∣X ∣q+div(X) = (1− p) ∣∇u∣p
∣u∣p +µ1,p(Ω)+(p−1) ∣∇u∣p

up

= λ1,p(Ω).
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Abstract: In this short note we present a simple proof of the
Omori-Yau maximum principle, and show two applications of
this important maximum principle at infinity for unbounded iso-
metric immersions into product spaces. Specifically, we prove
sectional curvature estimates for submanifolds immersed into
a Riemannian warped product space, and a slice type theorem
for spacelike hypersurfaces with positive constant higher order
mean curvature immersed in a Robertson-Walker space.

1 The maximum principle at infinity

Omori [23], studying isometric immersions of minimal subman-
ifolds into cones of Rn, introduce the following global version of
the maximum principle for complete Riemannian manifolds sat-
isfying some constraints on the sectional curvature.

Theorem 1.1 (Omori [23]). Let M be a complete Riemannian
manifold and suppose that the sectional curvature is bounded
below by KM ≥ −Λ

2. If u ∈C2(M) with u∗ = supM u < ∞ then there

†The author is partially supported by CNPq-Brazil 167
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exists a sequence of points xk ∈M such that

lim
k→∞

u(xk) = u∗, ∣∇u∣(xk) <
1
k
, Hessu(xk)(X ,X) < 1

k
⋅ ∣X ∣2,

for every X ∈ Txk M.

Omori’s maximum principle was refined and extended by
Yau in a series of papers [13], [34] and [35] to Riemannian man-
ifolds with Ricci curvature bounded below and applied to find
elegant solutions to various analytic-geometric problems on Rie-
mannian manifolds. Pigola, Rigoli and Setti [28] introduced the
following terminology.
Definition 1.1. The Omori-Yau maximum principle for the La-
placian is said to hold on M if for any given u ∈C2(M) with u∗ <∞,
there exists a sequence of points xk ∈M such that

lim
k→+∞

u(xk) = u∗, ∣∇u∣(xk) <
1
k
, △u(xk) <

1
k
.

Likewise, the Omori-Yau maximum principle for the Hessian is
said to hold on M if for any given u ∈C2(M) with u∗ < ∞, there
exists a sequence of points xk ∈M such that

lim
k→∞

u(xk) = u∗, ∣∇u∣(xk) <
1
k
, Hessu(xk)(X ,X) < 1

k
⋅ ∣X ∣2,

for every X ∈ Txk M.

It is well-known that the Hessian and Laplacian Omori-Yau
maximum principles depend in a subtle way on the geometry of
a complete manifold M (see for instance [12, 31]). A systematic
study has been undertaken for various authors [28], [27, 9], [7],
where the authors described a general function-theoretic crite-
rion.
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Theorem 1.2. The Omori-Yau maximum principle holds for the
Laplacian provided that M supports a function 0 < γ ∈C2(M/K),
for some compact K, with the following properties:

i. γ(x) → +∞ as x diverges,

ii. ∣∇γ ∣ ≤ F(γ),

iii. ∆γ ≤ F(γ),

for some F satisfying

0 < F ∈C1(R+), F ′ ≥ 0, F−1 /∈ L1(+∞). (1.1)

For the Hessian principle, the last condition in (1.2) has to be
replaced by ∇dγ ≤ F(γ)⟨ , ⟩.

In a nomenclature due to [2], the pair (γ,F) is called an
Omori-Yau pair for M. The above criterion described in Theorem
1.2 is called the Khas’minskii test, and it is effective since the
Khas’minskii potential γ in Theorem 1.2 can be explicitly found
in a number of geometrically relevant applications (see [28, 7]):
for instance, letting γ(x) = ρ(x) denote the distance from a fixed
origin o, when M is complete the Khas’minskii test holds if the
Ricci curvature satisfies

Ricx(∇ρ,∇ρ) ≥ −F2(ρ(x)) outside of cut(o). (1.2)

However, γ might be independent of the curvatures of M, and
actually there are cases when (1.2) is met but the sectional cur-
vature of M goes very fast to −∞ along some sequence [28, p.
13]. For the Hessian principle, (1.2) has to be replaced by an
analogous decay for all of the sectional curvatures of M:
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KM(πx) ≥ −F2(ρ(x))
∀x /∈ cut(o),
∀πx ≤ TxM 2-plane containing ∇ρ.

(1.3)

Note that (1.1) includes the case when F(t) is constant, consid-
ered in [23, 34]. With simple manipulation, we can extract from
Theorem 1.2 an easy form for the Khas’minskii test: first, we
observe that up to replacing γ with

∫
γ

0

ds
F(s) ,

without loss of generality we can choose F(γ) ≡ 1; next, since γ is
an exhaustion, for λ > 0 fixed it holds ∆γ ≤ 1 ≤ λγ on M/K, if K is
large enough. In other words, from the conditions i., ii. and iii. in
Theorem 1.2 we can produce a new γ satisfying ∣∇γ ∣ ≤ 1, ∆γ ≤ λγ

outside some compact set.

Proof of Theorem 1.2:
We fix a sequence of positive real numbers (εk)k∈N such that,
εk → 0 and consider now any function u ∈ C2(M) bounded from
above. Define gk(x) = u(x)−εkϕ(γ(x)), where

ϕ(t) = ∫
t

0

ds
F(s) . (1.4)

Observe that ϕ is C2(M), positive and satisfies ϕ(t) → +∞ as t →
+∞. By a direct computation we have

ϕ
′(t) = 1

F(t) ,

ϕ
′′(t) = −F ′(t)

F2(t) ,

and using the properties satisfied by F we conclude that
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ϕ
′′(t) ≤ 0. (1.5)

It is clear that gk attains its supremum at some point xk ∈M. This
gives the desired sequence xk. It follows directly from definition
of gk that

∇gk(x) = ∇u(x)−εkϕ
′(γ(x))∇γ(x).

In particular, at the points xk, using (1.2), we obtain

∣∇u∣(xk) = εkϕ
′(γ(xk))∣∇γ ∣(xk) ≤ εk. (1.6)

Computing Hessgk(x)(v,v) we have

Hessgk(x)(X ,X) = Hessu(x)(X ,X)−εkϕ
′(γ(x))Hessγ(x)(X ,X)

−εkϕ
′′(γ(x))⟨∇γ(x),X⟩2 (1.7)

≥ Hessu(x)(X ,X)−εkϕ
′(γ(x))Hessγ(x)(X ,X)

for all X ∈ TxM. Again, since xk is a maximum point of gk, by (1.2)
and the expression of ϕ

′, we get

Hessu(xk)(X ,X) ≤ εkϕ
′(γ(xk))Hessγ(xk)(X ,X) ≤ εk⟨X ,X⟩. (1.8)

Finally, in the case of the Laplacian, we obtain

∆u(xk) ≤ εkϕ
′(γ(xk))∆γ(xk) ≤ εk.

To finish the proof we need to show that u(xk) → u∗. To do that,
we follow [28] closely and observe that for any fixed j ∈N, there
is a y ∈M such that u(y) > supu−1/2 j.
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Since gk has a maximum at xk we have

u(xk)−εkϕ(γ(xk)) = gk(xk) ≥ gk(y) = u(y)−εkϕ(γ(y)).

Therefore

u(xk) > supu− 1
2 j
−εkϕ(γ(y)). (1.9)

Choosing k = k( j) = k j sufficiently large such that

εk j ϕ(γ(y)) < 1
2 j

, (1.10)

it follows from (1.9) and (1.10) that

u(xk j) > supu− 1
2 j
− 1

2 j
= supu− 1

j
. (1.11)

Therefore lim
j→+∞

u(xk j) = u∗ and this finishes the proof.

Remark 10. It is worth to remark that the above proof holds true
for smooth functions u satisfying the growth

lim
x→∞

u(x)
ϕ(γ(x)) = 0,

where ϕ was defined in (1.4). This allows to consider unbounded
functions, which enlarge the range of applications of the Omori-
Yau maximum principle (cf. [9, 10, 11]).

The Omori-Yau maximum principle can be also considered
for differential elliptic operators other than the Laplacian (see
[7] for a complete overview), like the φ -Laplacian, see [29] and
semi-elliptic trace operators L = Tr(P ○ hess) considered in [20],
[8] and [6], where P∶T M → T M is a positive semi-definite sym-
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metric tensor on T M and for each u ∈C2(M), hessu∶T M→ T M is a
symmetric operator defined by hessu(X) =∇X∇u for every X ∈ T M.
Here, we are going to consider the trace operator

Lu = Tr(P○hessu)+⟨V,∇u⟩ (1.12)

with supM ∣V ∣ < +∞, and state an Omori-Yau maximum principle
in the same spirit of Theorem 1.9 in [28], see also [18] and [1].
The following result is contained in [10] and it is a slight exten-
sion of Theorem 1 of [6]. Its proof is very similar to that Theorem
1.2.
Theorem 1.3. Let M be a complete Riemannian manifold. Con-
sider a semi-elliptic operator L defined as in (1.12), where V is
bounded. Suppose that there exists a Khas’minskii potential 0 <
γ ∈C2(M/K), for some compact K, with the following properties:

i. γ(x) → +∞ as x diverges,

ii. ∣∇γ ∣ ≤ F(γ),

iii. tr(P○hessγ) ≤ F(γ),

where F satisfies (1.1). Then given any function u ∈C2(M) satis-
fying (1.4), there exists a sequence {xk}k∈N ⊂M satisfying:

(a) ∣∇u∣(xk) <
1
k

and (b) Lu(xk) <
1
k
.

If we suppose that u is bounded above we have that

(c) lim
k→+∞

u(xk) = u∗.

Corollary 1.1. Let (M,⟨,⟩) be a complete, non-compact, Rieman-
nian manifold with radial sectional curvature satisfying
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KM(πx) ≥ −B2(ρ(x))2 ∀x /∈ cut(o), outside a compact set

∀πx ≤ TxM 2-plane containing ∇ρ.

for some constant B ∈ R+. Then, the Omori-Yau maximum prin-
ciple for the semi-elliptic operator L defined in (1.12) holds on M

provided V is bounded and tr P = o(logr) as r→+∞.

Proof. Following the same steps of the Example 1.13 in [28] one
has that above bound on the sectional curvature gives rise to

Hessr ≤Dr,

with D > 0. Then, taking γ = r and F(t) =Dt logt, we conclude that

tr(P○hess) ≤ F(γ).

Therefore, we conclude from Theorem 1.3.

2 Geometric Applications

The main goal of this section is describe two ways to obtain nice
geometric resuts basing on ideas from the maximum principle
at infinity. In one hand, we derive curvature estimates of sub-
manifolds immersed on a warped product manifold by making
use of the method implemented to prove Theorem 1.2. On the
other hand, as a direct application of the Omori-Yau maximum
principle we prove slice theorems for submanifolds immersed on
Roberson-Walker product space. In both applications the sub-
manifolds considered could be unbounded.
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2.1 Curvature Estimates

Since the estimates that will be given depends on the warping
function and on the geometry of the manifolds involved, it is
convenient to present briefly a basic introduction on the warped
product. We will follow closely the book of [25].

We know that on the product manifold L×N the metric ten-
sor is given by π

∗
L
(gL)+π

∗
N
(gN), where πL and πN are the canonical

projections of L×N onto L and N, respectively. Letting ρ ∶L→R+

be a positive smooth function, we define the warped product
L×ρ N by the product manifold L×N furnished with metric tensor

g = π
∗
L
(gL)+(ρ ○πL)2

π
∗
N
(gN). (2.1)

Writing P = L×ρ N , the goal is to express the geometry of P

in terms of warping function ρ and the geometries of L and N. L

is called the base of P and N the fiber. The relation of a warped
product to the base L is almost as simple as in the trivial case of
a Semi-Riemannian product. Although, the relation to the fiber
N often involves the warping function ρ. In the next lemma we
collect some important properties.

Lemma 2.1. Let f ∶L→R be a smooth function and T,S ∈ T L and
X ,Y ∈ T N. The following relations holds on P = L×ρ N:

a) dπL∇P( f ○πL) = ∇L f ,

b) ∇P
S T = ∇L

ST,

c) ∇P
X T = ∇P

T X = T(η)X ,

d) ∇P
XY = ∇N

XY −⟨X ,Y ⟩P∇L
η ,

where η = lnρ.
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φh-Bounded Submanifolds L×ρ N

Let N be a geodesically complete Riemannian manifold with a
distinguished point z0 and radial sectional curvature along the
geodesics issuing from z0,

Krad
N (z) ≤ −G(ρN(z)) ≤ b ≤ 0 (2.2)

where ρN(z) = distN(z0,z) and G ∈C∞([0,∞)). Let h be the solution
of the Cauchy problem

⎧⎪⎪⎨⎪⎪⎩

h′′(t)−G(t)h(t) = 0,

h(0) = 0, h′(0) = 1.
(2.3)

Since −G ≤ 0 we have that

h(t) > 0 in R+ = (0,∞) and liminf
t→+∞

h(t) > 0. (2.4)

Let L be a geodesically complete `-dimensional Riemannian
manifold with a distinguished point y0 and radial sectional cur-
vature

Krad
L (y) ≥ −F2(ρL(y)) (2.5)

where ρL(y) = distL(y0,y), F ∈C1(R+
0 ), F−1 /∈ L1(+∞), F(0) = 1, and

F ′(t) ≥ 0. Let g be the solution of

⎧⎪⎪⎨⎪⎪⎩

g′′(t)−F2(t)g(t) = 0,

g(0) = 0, g′(0) = 1.

It follows from F > 0 that

g(t) > 0 on R+ = (0,+∞), g′(t) ≥ 0. (2.6)
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The Hessian Comparison Theorem (see [16] or [30]) applied to
ρL yields

Hess LρL ≤
g′

g
(ρL){⟨ ,⟩L−dρL ⊗dρL} . (2.7)

Letting

ψ(t) = (exp[∫
t

0
F(s)ds]−1)

we see that ψ satisfies

⎧⎪⎪⎨⎪⎪⎩

ψ
′′(t)−F2(t)ψ(t) ≥ 0,

ψ(0) = 0, ψ
′(0) = 1.

Applying Sturm comparison theorem, see [30, Chapter 2.], we
have that

g′

g
(t) ≤ ψ

′

ψ
(t) = F(t)ψ(t)+1

ψ(t) . (2.8)

Consider the functions φh ∈C∞(R+
0 ) and ζ ∈C2(R+

0 ) given by

φh(t) = ∫
t

0
h(s)ds, ζ(t) = ∫

t

0

ds
F(s) ⋅

For ε ∈ (0,1), define the region

Ωφh,ζ (ε) = {(y,z) ∈ L×ρ N∶φh(ρN(z)) ≤ ζ(ρL(y))1−ε}.

Definition 2.1. An isometric immersion ϕ ∶M → L×ρ N of a Rie-
mannian manifold M into the product L×ρ N is said to be φh-
bounded if there exist a compact K ⊂ M and ε ∈ (0,1) such that
ϕ(M/K) ⊂Ωφh,ζ (ε).

A properly immersed φh-bounded hypersurface of L×ρ N does
not need to be cylindrically bounded, since the ends of any cylin-
der are contained properly in Ωφh,ζ (ε).
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Jorge-Koutrofiotis’ Estimate

The classical isometric immersion problem asks whether there
exists an isometric immersion ϕ ∶Mm→ Nn for given Riemannian
manifolds M and N, with m < n. The model result for this type
of problem is the celebrated Efimov-Hilbert Theorem that says
that there is no isometric immersion of a geodesically complete
surface M with sectional curvature KM ≤−δ

2 < 0 into R3, δ ∈R, see
[17] and [15]. On the other hand, the Nash Embedding Theorem
shows that there is always an isometric embedding into the Eu-
clidean n-space Rn provided the codimension n−m is sufficiently
large, see [22].

For small codimension, meaning that n−m ≤ m− 1, the an-
swer in general depends on the geometries of M and N. For in-
stance, a classical result of Tompkins [33] states that a compact,
flat, m-dimensional Riemannian manifold can not be isometri-
cally immersed into R2m−1 (see also [14], [26], [24], [32] and [21]).
In [19] Jorge and Koutrofiotis considered this question for com-
plete extrinsically bounded5 submanifolds with scalar curvature
bounded from below. Our first application is an extension of the
Jorge-Koutrofiotis Theorem.
Theorem 2.1. Let ϕ ∶M→ L×ρ N = P be a properly immersed sub-
manifold such that ϕ(M/K) ⊂ Ωφh,ζ (ε) for some compact K ⊂ M

and positive ε ∈ (0,1). Suppose that the sectional curvatures of N

and L satisfy (2.2) and (2.5). If ρ is bounded and n−m ≤ m− `−1,
then

sup
M

ρ
−2KM ≥ ∣b∣+ inf

N
ρ
−2KN . (2.9)

With strict inequality sup
M

KM > inf
N

KN if b = 0.

5Meaning: immersed into regular geodesic balls of a Riemannian manifold.
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Sketch of the Proof:

Take x0 ∈M such that ϕ(x0) = (y0,z0) ∈P. Define f ∶M→R by f (x) =
φh ○ρN(z(x)), and p∶M→R by p(x) = ζ ○ρL(y(x)). For each k ∈N, set
gk(x) = f (x)− 1

k p(x). Observe that gk(x0) = 0 for all k and since ϕ is
proper gk(x) < 0 whenever ρM(x) ≫ 1. This implies that gk has a
maximum at a point xk, yielding in this way a sequence {xk} ⊂M

such that HessM gk(xk) ≤ 0, in the sense of quadratic forms. Pro-
ceeding as in the proof of Theorem 1.2 we have that for X ∈ Txk M,

HessM f (xk)(X ,X) ≤ 1
k

HessM p(xk)(X ,X). (2.10)

We need to estimate both terms of (2.10). Since HessP p =
HessL p and ζ

′′ ≤ 0, for e ∈ Txk M, ∣e∣ = 1, we compute at xk

HessM p(e,e) = HessL p(e,e)+⟨∇P p,α(e,e)⟩

= ζ
′′(ρL)⟨e,∇LρL⟩2+ζ

′(ρL)HessLρL(e,e)

+ ζ
′(ρL)⟨∇LρL ,α(e,e)⟩

≤ 1
F(ρL)

(HessLρL(e,e)+ ∣α(e,e)∣)

≤ ψ(ρL)+1
ψ(ρL)

+ ∣α(e,e)∣, (2.11)

where in the last inequality we have used (2.8) and the fact that
F ≥ 1.

In order to compute the left hand side of (2.10) we set f =
φh ○ g ○ϕ where g is given by g(y,z) = ρN(z). Let us consider an
orthonormal basis at Tϕ(xk)(L×ρ N)

{
∈T L

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∂/∂γ1 , . . . ,∂/∂ γ̀ ,

∈T N
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∇ρN ,∂/∂θ1 , . . . ,∂/∂θn−`−1}. (2.12)
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Thus if e ∈ Txk M, ∣e∣ = 1, we can decompose

e =
`

∑
i=1

ci ⋅∂/∂γi+a ⋅∇ρN +
n−`−1

∑
j=1

b j ⋅∂/∂θ j,

with ρ
2 (a2+∑n−`−1

j=1 b2
j)+∑`

i=1 c2
i = 1.

Applying again the Hessian Comparison Theorem (see [16]
or [30]) and using that ∇Pg = ρ

−2∇N ρN and

HessPg(e,e) = −2⟨∇Lη ,e⟩⟨∇N ρN ,e⟩+HessPρN(e,e),

we compute at xk

HessP f (e,e) = φ
′′
h (ρN)⟨e,∇Pg⟩2

P
+φ

′
h(ρN)HessPg(e,e)

≥ −2h(ρN)⟨∇Lη ,e⟩⟨∇N ρN ,e⟩+h′(ρN)∣eN ∣2,

Recalling that n+ ` ≤ 2m− 1. This dimensional restriction im-
plies that for every x ∈ M there exists a sub-space Vx ⊂ TxM with
dim(Vx) ≥ (m− `) ≥ 2 such that V ⊥ T L, this is equivalent to ci = 0.
If we take any e ∈Vxk ⊂ Txk M, ∣e∣ = 1 we have

HessP f (e,e) ≥ h′(ρN)

Now, we can estimate the left hand side of (2.10)

HessM f (xk)(e,e) = HessP f (ϕ(xk))(e,e)+⟨∇P f ,αxk(e,e)⟩

≥ h′(ρN)+φ
′
h(ρN)⟨ρ−2∇N ρN ,α(e,e)⟩P

≥ h(ρN)[
h′(ρN)
h(ρN)

−ρ
−1∣α(e,e)∣P] . (2.13)
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Substituting (2.11) and (2.13) in (2.10) we obtain

ψ(ρL)+1
kψ(ρL)

+ ∣α(e,e)∣
k

≥ h(ρN)[
h′(ρN)
h(ρN)

−ρ
−1∣α(e,e)∣P] ,

which implies that

[ 1
h(ρN)k

+ 1
ρ
]∣α(e,e)∣ ≥ h′

h
(ρN)−

ψ(ρL)+1
kh(ρN)ψ(ρL)

. (2.14)

Since −G ≤ b, by the Sturm Comparison Lemma [30] ∣αxk(e,e)∣ >
0. Using the Otsuki’s Lemma and the Gauss equation we find
X ,Y ∈Vxk , ∣X ∣ ≥ ∣Y ∣ ≥ 1 such that ∣αxk(X ,X)∣ = ∣αxk(Y,Y)∣ and

KM(xk)(X ,Y)−KN(ϕ(xk))(X ,Y) ≥ ∣αxk (
X
∣X ∣ ,

X
∣X ∣) ∣2 > 0,

which means that supKM − infKN > 0 if b ≤ 0. On the other hand, if
b < 0, we let k→+∞ to get

supρ
−2KM − infρ

−2KN ≥ [ lim
k→+∞

h′

h
(ρN(zk))]

2

> ∣b∣.

2.2 Slice Theorem in Robertson-Walker Spaces

One basic problem on the study of spacelike hypersurfaces in
spacetimes is the uniqueness of spacelike hypersurfaces with
constant mean curvature and constant higher order mean cur-
vature in certain spacetimes, such as the conformally stationary
spacetimes. One especial case of these spaces are the general-
ized Robertson-Walker spacetimes. Following Alias and Colares
[4], a generalized Robertson-Walker spacetime is a Lorentzian
warped product −I×ρ Mn with Riemannian fiber Mn and warping
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function ρ. In particular, when the Riemannian factor Mn has
constant sectional curvature then −I ×ρ Mn is classically called
a Robertson-Walker spacetime. In this section we are inter-
ested in the study of uniqueness of complete spacelike hypersur-
faces with constant higher order mean curvature in generalized
Robertson-Walker spacetimes.

The works of Alias, Brasil Jr and Colares [3] and Alias and
Colares [4] initiated the study of hypersurfaces with constant
higher order mean curvature in conformally stationary space-
times. Recently, Alias, Impera and Rigoli [5] were deeper into
this study considering the case of compact and complete space-
like hypersurfaces. In order to obtain our second application we
begin with the following tecnichal Lemma (see [5] for a proof).

Lemma 2.2. Let f ∶Mn→−I×ρ Nn be a spacelike hypersurface im-
mersed into a generalized Robertson-Walker spacetime. Let h be
the height function and define Lk = tr(Pk ○hess). Then

Lkh = −H(h)(ckHk +⟨Pk∇h,∇h⟩)−ckΘHk+1, (2.15)

where ck = (n−k)
⎛
⎝

n

k

⎞
⎠

, Θ = ⟨η ,T ⟩ and H(h) = ρ
′(h)

ρ(h) . In particular,

∆h = −H(h)(n+∣∇h∣2)−nΘH1. (2.16)

The next Lemma reveals us the important role of the be-
haviour of the angle function Θ in this theory.
Lemma 2.3. Let f ∶Mn →−I×ρ Nn be an oriented spacelike hyper-
surface with H > 0, and assume that H′ ≤ 0. Suppose that M sup-
ports a Khas’minskii potential γ and that the height function h

satisfies
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lim
x→∞

h(x)
ϕ(γ(x)) = 0, (2.17)

where ϕ is given in (1.4). Then we have that

i) If Θ < 0 then H(h) ≥ 0,

ii) If Θ > 0 then H(h) ≤ 0.

Proof. By hypothesis, we have that Omori-Yau maximum prin-
ciple for the Laplacian holds for the height function h, therefore,
there exist sequences {x j},{y j} ⊂M such that

lim
j→+∞

h(x j) = h∗, ∣∇h∣2(x j) < (1
j
)

2

, ∆h(x j) <
1
j
, (2.18)

and

lim
j→+∞

h(y j) = h∗, ∣∇h∣2(y j) < (1
j
)

2

, ∆h(x j) > −
1
j
. (2.19)

Therefore, supposing Θ < 0, we get by (2.16) and (2.18) that

1
j

> −H(h(x j))(n+∣∇h∣2(x j))−nH1(x j)Θ(x j)

≥ −H(h(x j))(n+∣∇h∣2(x j)).

Then, when j→+∞ we obtain

0 ≤ limsup
j→+∞

H(h(x j)) =H(h∗) ≤H(h). (2.20)

Similar proof using (2.19) gives the item ii).

In the next theorem we present a slight generalization of
the theorem 4.6 in [5]. In fact, now we do not make hypothesis
about the growth of the height function, and nothing is required
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over the mean curvature H1.
Theorem 2.2. Let f ∶Mn→−I×ρ Nn be a complete oriented space-
like hypersurface of constant 2-mean curvature H2 > 0. Assume
that

Krad
M ≥ −F2(r) outside a compact set, (2.21)

where F is even at the origin and satisfies (1.1) in Theorem 1.2.
Suppose also that h satisfies the condition (2.17). If H′ < 0 almost
everywhere, then f (M) is a slice.

Proof. Take an orientation on M in such a way that H > 0. If we
assume that Θ< 0, Lemma 2.3 implies thatH(h) ≥ 0 and applying
the Omori-Yau maximum principle for the Laplacian we have
that there exists a sequence {x j} ⊂M such that

i. lim j→+∞h(x j) = h∗,

ii. ∣∇h∣(x j) < 1
j ,

iii. ∆h(x j) < 1
j .

Since Θ(x j) ≤ −1, the item iii. give us

1
j

> = −H(h(x j))(n+∣∇h∣2(x j))−nΘ(x j)H1(x j)

≥ −H(h(x j))(n+∣∇h∣2(x j))+nH
1
2

2

where we used the Garding’s inequality in the last line. Making
j→+∞, we get

H(h∗) ≥H
1
2

2 . (2.22)

Analogously, applying the Omori-Yau maximum principle for L̂1

there exists a sequence {y j} ⊂M such that
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i. lim j→+∞h(y j) = h∗,

ii. ∣∇h∣(y j) < 1
j ,

iii. L̂1h(y j) > −1
j .

Since P1 is positive semi-definite, using the Garding’s inequality
again

−1
j

< −H(h(y j))(n+ 1
H1

⟨P1∇h,∇h⟩(y j))

−nΘ(y j)
H2

H1
(y j)

≤ −H(h(y j))(n+ 1
H1

β ∣∇h∣2(y j))−nΘ(y j)H
1
2

2

≤ −nH(h(y j))−nΘ(y j)H
1
2

2 .

Therefore taking the limit in j→+∞

H
1
2

2 ≥H(h∗). (2.23)

Combining (2.22) with (2.23), we get that

H(h∗) ≥H
1
2

2 ≥H(h∗)

and as H is a decreasing function, we conclude that h∗ = h∗ <∞.
The case Θ > 0 can be treated inverting the inequalities in the
above proof.

Using Theorem 1.3 we can extend Theorem 2.2 for the case
of higher order mean curvatures.
Theorem 2.3. Let f ∶Mn→−I×ρ Nn be an oriented complete space-
like hypersurface of constant k-mean curvature Hk > 0, 3 ≤ k ≤ n.
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Assume that

Krad
M ≥ −F2(r) outside a compact set, (2.24)

where F is even at the origin and satisfies (1.1) in Theorem 1.2.
Suppose also that the height function satisfies condition (2.17)
and that there exists an elliptic point in M. If H′ < 0 almost ev-
erywhere, then f (M) is a slice.
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Abstract: In this note, we present an alternating minimiza-
tion method on CAT(0) spaces for solving unconstrained convex
optimization problems where the objective function is written
as the sum of two separable convex functions. We prove that
the sequence generated by our algorithm weakly converges to a
minimizer of the objective function. The method proposed here
is attractive to solve certain range of problems.

1 Introduction

Several convex optimization problems that arise in practice are
modeled as the sum of convex functions, see for instance Gold-
farb and Ma [17], Tikhonov and Arsenin [29], Candès et al. [10]
and Donoho [16]. Minimizing sum of simple functions or finding
a common point to a collection of closed sets is a very active field
of research with application for instance in approximation the-
ory (von Neumann [31]) and image reconstruction (Combettes

†The author is partially supported by CNPq-Brazil 193
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and Wajs [13]). Let us describe some problems involving sum of
convex functions.

• In [18], Goldfarb et al. present the following problem:

min
x∈Rn

{F(x) = f (x)+g(x)} ,

where f ,g ∶Rn→R are convex functions. A more specific ex-
ample of this problem is the `1 minimization in compressed
sensing (CS):

min
x∈Rn

{F(x) = 1
2
∥Ax−b∥2

2+ρ∥x∥1} ,

where f (x) = 1
2∥Ax−b∥2

2, g(x) = ρ∥x∥1, A ∈Rm ×Rn, b ∈Rm and
ρ > 0.

• In [13], the authors consider the following problem:

min
x∈H

{F(x) = f (x)+g(x)} ,

where H is a Hilbert space, f ∶ H →]−∞,∞] and g ∶ H →
R are proper, lower semicontinuous and convex functions,
and g is differentiable on H with 1/β -Lipschitz continuous
gradient for some β ∈]0,∞[.

• In [2], Attouch et al. describe a separable convex optimiza-
tion problem with coupling as follows:

min
x∈H1, y∈H2

{ f (x)+g(y)+h(x,y)} ,

where H1,H2 are Hilbert spaces, f ∶ H1 → R∪{+∞} and g ∶
H2 → R∪{+∞} are proper, lower semicontinuous and con-
vex functions, and h ∶ H1×H2→R+ is a nonnegative quadra-
tic form.
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It is well known that the class of Proximal Point Algorithm
(PPA) is one of the most studied methods for finding zeros of
maximal monotone operators and, in particular, it is used to
solve convex optimization problems. The classical PPA was in-
troduced into optimization literature by Martinet [25]. It is
based on the notion of proximal mapping J f

λ
,

J f
λ
(x) = argmin

z
{ f (z)+ 1

2λ
∣∣z−x∣∣2}, (1.1)

introduced earlier by Moreau [26]; see also Brézis and Lions [9].
The PPA was popularized by Rockafellar [27], who showed the
algorithm converges even if the auxiliary minimizations in (1.1)
are performed inexactly, which is an important consideration in
practice.

Gradually, many of the algorithms for solving optimization
problems have been generalized from linear spaces (Euclidean,
Hilbert, Banach) into differentiable manifolds. In particular, the
proximal point algorithm in the context of Riemannian man-
ifolds (of nonpositive sectional curvature) was studied for in-
stance in [7, 19, 24, 28]. Along these lines Bǎcák [5] intro-
duced the PPA into geodesic metric spaces of nonpositive cur-
vature, so-called CAT(0) spaces. Recently, Zaslavski [33] pro-
posed a different approach to the PPA in metric spaces; see also
[1, 11, 12]. The main advantages of these extensions are that
nonconvex problems in the classic sense may become convex
and constrained optimization problems may be seen as uncon-
strained ones through the introduction of an appropriate Rie-
mannian metric; see [15, 20, 30].

As mentioned by Bǎcák [5] there are natural obstacles one
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has to overcome in CAT(0) spaces. Unlike Riemannian mani-
folds, CAT(0) spaces do not come equipped with a Riemannian
metric, and, probably relatedly, we do not have a notion of a sub-
gradient of a convex function. The proof of (weak) convergence
of the PPA in Hilbert spaces, on the other hand, does use both
the inner product and the convex subgradient, and therefore we
cannot simply translate the existing proof into the context of
metric spaces.

In this note, we present an alternating minimization method
for solving unconstrained convex optimization problems where
the objective function is written as the sum of two separable
convex functions. Alternating algorithms has been studied in
several settings. The starting fundamental result is due to von
Neumann [32] with the purpose of solving convex feasibility
problems. More recently Attouch et al. [3] presented alternating
algorithms for nonconvex functions with applications in decision
sciences. Other important approach of alternating algorithm
with applications in game theory in the context of Hadamard
manifolds was presented by Cruz Neto et al. [14]. One of the
main advantage of alternating algorithms is that it enables us
to monitor what happens in each space of action after a given
iteration. Furthermore, computations are quite simplified com-
pared to the one in the product space. Due to the wide potential
range of applications of alternating algorithms (from engineer-
ing to decision sciences) we adopt a quite general terminology.

2 Elements of CAT(0) spaces

In this section we introduce some fundamental properties and
notations concerning CAT(0) spaces which can be found for in-
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stance in Bridson and Haefliger [8].

Let (M,d) be a metric space, where M is a set and d a metric
in M. A geodesic path joining x ∈ M to y ∈ M (or, more briefly, a
geodesic from x to y) is a map γ from a closed interval [0,`] ⊂ R
such that γ(0) = x, γ(`) = y and d(γ(t),γ(t′)) = ∣t − t′∣ for all t,t′ ∈
[0,`]. Let M be a geodesic space, i.e., a metric space for which
every two points x,y ∈ M can be joined by a geodesic segment,
and ∆(x,y,z) a geodesic triangle in M, which is a union of three
geodesics. Let [x,y] denote the geodesic side between x,y. A com-
parison triangle for ∆ is a triangle ∆̄(x̄, ȳ, z̄) in R2 with the same
side lengths as ∆. The interior angle of ∆̄ at x̄ is called the com-
parison angle between y and z at x, and is denoted α

′(y,x,z). Let
p be a point on a side of ∆, say, [x,y]. A comparison point in ∆̄

is a point p̄ ∈ [x̄, ȳ] with d(x, p) = dR2(x̄, p̄). ∆̄ satisfies the CAT(0)
inequality if for any p,q ∈ ∆ and their comparison points p̄, q̄ ∈ ∆̄,

d(p,q) ≤ dR2(p̄, q̄).

M is a CAT(0) space iff all geodesic triangles in M satisfy the
CAT(0) inequality. (M,d) is said to be a geodesic metric space
(or, more briefly, a geodesic space) if every two points in M are
joined by a geodesic.

Let (M,d) be a CAT(0) space. Having two points x,y ∈ M, we
denote the geodesic segment from x to y by [x,y]. We usually do
not distinguish between a geodesic and its geodesic segment, as
no confusion can arise. A subset A of a metric space (M,d) is
said to be convex iff every pair of points x,y ∈A can be joined by a
geodesic in M and the image of every such geodesic is contained
in A.
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Example 2.1. Standard examples of CAT(0) spaces, see [8].

• Hyperbolic spaces, Hn..

• Symmetric spaces of non-compact type. For example,
SL(n,R)/SO(n).

• Hadamard manifolds, i.e., complete, simply connected Rie-
mannian manifolds of non-positive sectional curvature.

• Products of CAT(0) spaces.

• When endowed with the induced metric, a convex subset of
Euclidean space Rn is CAT(0).

• Euclidean space, Rn.
Remark 11. From [5] a geodesic metric space (M,d) is a CAT(0)
space if for any x ∈ M and t ∈ [0,1], and any geodesic γ ∶ [0,1] →M,
we have

d2(x,γ(t)) ≤ (1− t)d2(x,γ(0))+ td2(x,γ(1))− t(1− t)d2(γ(0),γ(1)).
(2.1)

For any metric space (M,d) and A⊂M, we define the distance
function by

dA(x) = inf
a∈A

d(x,a), x ∈M.

Let us note that the function dA is convex and continuous pro-
vided M is CAT(0) space and A is a convex and complete set,
see [8, page 178].
Lemma 2.1. Let (M,d) be a CAT(0) space and A ⊂M be complete
and convex. Then,

(i) For every x ∈ M, there exists an unique point PA(x) ∈ A such
that d(x,PA(x)) = dA(x).

(ii) If y ∈ [x,PA(x)] , then PA(x) = PA(y).
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(iii) If x ∈M/A and y ∈ A such that PA(x) ≠ y, then

α(x,PA(x),y) ≥ π/2.

(iv) The mapping PA is a non-expansive retraction from M onto
A.

Proof. See [8, page 176].

The mapping PA is called the metric projection onto A. A
point x0 ∈ M is called the weak limit of a sequence {xn}n∈N ⊂ M iff
for every geodesic arc γ starting at x0, Pγ(xn) converges to x0. In
this case, we say that {xn} converges to x0 weakly. We use the
notation xn wÐ→ x0. Note that if xn → x0, then xn wÐ→ x0. Moreover, if
there is a subsequence {xnk} of {xn} such that xnk

wÐ→ x̄ for some
x̄ ∈ M, we say that x̄ is a weak cluster point of the sequence {xn}.
Every bounded sequence has a weak cluster point, see [21, The-
orem 2.1] or [22, page 3690]. A function f ∶M→(−∞,∞] is called
weakly lower semicontinuous at a given point x ∈M iff

liminf
n→∞

f (xn) ≥ f (x)

for each sequence xn wÐ→ x. A sequence {xn} ⊂M is Fejér monotone
with respect to A ⊂M if, for any a ∈ A,

d(xn+1,a) ≤ d(xn,a), n ∈N.

3 Alternating proximal algorithm

In this note, we propose and analyze an alternating proximal al-
gorithm in the setting of CAT(0) spaces. Consider the following
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minimization problem

minH(x,y)
s.t. (x,y) ∈M×N, (3.1)

where M and N are CAT(0) spaces and H ∶M×N → R∪{+∞} is a
proper, convex and lower semicontinuous function bounded from
below which has the following structure:

(i) H(x,y) = f (x)+g(y);

(ii) f ∶ M → R∪{+∞}, g ∶ N → R∪{+∞} are proper, convex and
lower semicontinuous.

The alternating proximal algorithm to solve optimization prob-
lems of the form (3.1) generates, for a starting point z0 = (x0,y0) ∈
M×N, a sequence {zk}k∈N, with zk = (xk,yk) ∈ M×N updated as fol-
lows:

(xk,yk) ↷ (xk+1,yk) ↷ (xk+1,yk+1)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xk+1 = argmin{H(x,yk)+λkd2
M(xk,x); x ∈M}

yk+1 = argmin{H(xk+1,y)+µkd2
N(yk,y); y ∈N},

(3.2)

where dM,dN are distances associated with spaces M and N re-
spectively, {λk} and {µk} are sequences of positive numbers and
H(x,y) = f (x) + g(y) is a separable function. Previous related
works can be found in Attouch et al. [2, 3, 4], in case that M =Rm

and N = Rn. In [23], Lewis and Malick studied a method of al-
ternating projections in which M ⊂Rn and N ⊂Rn are two smooth
manifolds transversally intersect.

At each iteration the method solves the following subprob-
lems in which we apply the proximal point method to solve them:

200



Minimization Methods on Geodesic Spaces

min
x∈M

{H(x,yk)+λkd2
M(xk,x)} (3.3)

and
min
y∈N

{H(xk+1,y)+µkd2
N(yk,y)} . (3.4)

4 Convergence analysis

We start with an useful result whose the proof follows easily
from the fact that a closed convex subset of a complete CAT(0)
space is (sequentially) weakly closed [6, Lemma 3.1].

Proposition 4.1. Let M be a complete CAT(0) space. If f ∶ M →
(−∞,∞] is a lower semicontinuous and convex function, then it
is weakly lower semicontinuous.

Proof. See [5, Lemma 3.1].

We define the distance d in M×N as follows:

d(z1,z2) = (d2
M(x1,x2)+d2

N(y1,y2))
1/2

,

for all z1 = (x1,y1), z2 = (x2,y2) in M×N, where dM and dN are dis-
tances in M and N respectively. It is easy to check that d is a
distance in M×N.

Now, let A ⊂M×N be the set of minimizers of H, i.e.,

A ∶= {a ∈M×N; H(a) = inf
a∈M×N

H(z)} .

Without loss of generality we can assume that H(a) = 0, for all
a ∈ A.
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Lemma 4.1. Let {zk} be the sequence generated by (3.2) and a ∈A.
Then,

(i) d(zk+1,a) ≤ d(zk,a), ∀k ∈N;

(ii) (c̄k)−1H(zk+1) ≤ d2(zk,a)−d2(zk+1,a), c̄k > 0.

Proof. Let γ ∶ [0,1] →M×N be a geodesic, with γ(0) = a and γ(1) =
zk+1. From (3.2),

f (xk+1)+g(yk)+λkd2
M(xk,xk+1) ≤ f (x)+g(yk)+λkd2

M(xk,x)

and

f (xk+1)+g(yk+1)+µkd2
N(yk,yk+1) ≤ f (xk+1)+g(y)+µkd2

N(yk,y).

Adding last two inequalities, we obtain

H(zk+1)+ckd2(zk,zk+1) ≤H(z)+c
′
kd2(zk,z), (4.1)

where ck =min{λk,µk} and c
′
k =min{λk,µk}. Thus,

H(zk+1)+ckd2(zk,zk+1) ≤H(γ(t))+c
′
kd2(zk,γ(t)).

The convexity of H means that

H(γ(t)) ≤ (1− t)H(γ(0))+ tH(γ(1)),

which implies

ckd2(zk,zk+1)−c
′
kd2(zk,γ(t)) ≤H(γ(t))−H(zk+1) ≤ (t −1)H(zk+1).

Taking x = zk in inequality (2.1), we get
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t(1− t)d2(zk+1,a)−(1− t)d2(zk,a) ≤ td2(zk,zk+1)−d2(zk,γ(t)).

Combining last two inequalities, we have

t(1− t)d2(zk+1,a)−(1− t)d2(zk,a) ≤ 1
c̄k

(t −1)H(zk+1) ≤ 0, (4.2)

where c̄k =max{ck,c
′
k} and t ≠ 1. Therefore,

td2(zk+1,a)−d2(zk,a) ≤ 0.

Taking t = 1 in last inequality we prove item (i). Item (ii) is a
direct consequence of (4.2).

Theorem 4.1. Let (M×N,d) be a complete CAT(0) space and H

be a lower semicontinuous and convex function. Assume that
H has a minimizer. Then, for a starting point z0 ∈ M ×N, and a
sequence of positive numbers {c̄k} such that ∑∞1 (c̄k)−1 = ∞, the
sequence {zk} ⊂ M×N defined by (3.2) weakly converges to a min-
imizer of H.

Proof. From Lemma 4.1 (i) and (ii), we have

H(z j+1)
j−1

∑
k=1

(c̄k)−1 ≤
j−1

∑
k=1

(c̄k)−1H(zk+1) ≤ 1
2

d2(z1,a)− 1
2

d2(z j,a)

and

H(z j+1) ≤ d2(z1,a)
∑ j−1

k=1(c̄k)−1
.

Since the right-hand side of last inequality goes to zero as j→∞,
it follows that {zk} is a minimizing sequence. Therefore, {H(zk)}
converges to zero as k→∞. To finish the proof, let z∗ be a weak
cluster point of {zk}. From Proposition 4.1, H is weakly lower
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semicontinuous. Thus, H(z∗) = 0, and therefore z∗ ∈ A. Using [6,
Proposition 3.3] it follows zk wÐ→ z∗ and the proof is completed.
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