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Abstract. In many soil-structure interaction problems, the soil medium model used is the Win-
kler foundation for mathematical simplicity. However, this foundation model cannot represent
the behavior of foundation materials for all engineering applications. The Pasternak model
can accomplish a more realistic and generalized description of the soil behavior. For struc-
tures with a large aspect ratio of height and length, Timoshenko beam theory is used, instead
of Euler-Bernoulli theory, since it takes both shear and rotary inertia into account. This paper
investigates the effects of the Pasternak foundation on the dynamic response of the Timoshenko
beam. A finite element is developed using cubic and quadratic polynomials, which are made
interdependent by requiring them to satisfy the static homogeneous differential equations asso-
ciated with Timoshenko beam theory. The influence of the foundation on the second spectrum
is concerned. The results showed that the presence of the foundation anticipates the second
spectrum and does not have a significant influence in its frequencies. Also, the presence of the
foundation permits a distinction between the two spectra for boundary conditions that do not
factorize.

Keywords: Finite Element Method, Timoshenko Beam Theory, Pasternak Foundation, Second
Spectrum, Free Vibration Analysis
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Second spectrum of Timoshenko beam on Pasternak foundation

1 INTRODUCTION

The issue of a beam on elastic foundation gained the interest of researchers and engineers
due to its importance in structural dynamics and soil media behavior description, as it can sim-
ulate geotechnical structures and transportation systems. The dynamic characteristics of these
structures constitute a fundamental procedure to determine the presence of undesired vibrations
which can affect the passenger comfort or adjacent structures.

Due to the very complex characteristics of soil-media, various researchers made efforts in
an attempt to propose a simple mathematical and physically consistent model to represent the
soil-structure interaction (Dutta and Roy, 2002). To obtain a meaningful and reliable informa-
tion for the response of the soil media, the models for practical problems takes into account
only some specifics aspects of its behavior (Selvadurai, 1979).

The simplest foundation model is that proposed by Winkler (1867), in which it the foun-
dation is represented as a series of mutually independent, closely spaced, discrete, linearly
elastic springs without coupling effects between each other (Dutta and Roy, 2002). However,
this model is a crude approximation of the correct mechanical behavior of the soil media, as
it disregards the effect of continuity and cohesion of the ground. Hence, this model cannot
represent the behavior of foundation materials for all engineering applications, giving a reli-
able response for soils with lower cohesion characteristics. Thus, two-parameter proposed by
Pasternak (1954) improves the Winkler model by adding a shear layer, a structural element that
deforms only due to transverse shear, to guarantee the interaction among the separated springs
(Avramidis and Morfidis, 2006). This approach provides more reliable information of stresses
and deformations of the soil media.

As far as the behavior of the beam is concerned, the most applications bases in the classical
Euler-Bernoulli theory in which predicts that straight lines and normal planes to neutral axis re-
mains after deformation (Avramidis and Morfidis, 2006). This model gives a good accuracy for
lower frequencies of a thin beam, however, in higher modes, the frequencies become inaccurate.

To overcome this limitation, the Timoshenko beam theory, which takes into account the
contribution of shear deformation and rotary inertia correction, gives a reliable information
for thicker beams and higher natural frequencies. The main consequence of this theory is the
existence of two frequency spectra (Manevich, 2015). This phenomenon that occurs mainly for
some boundary conditions intrigued researchers over the years.

Several papers concerned investigations this field. Traill-Nash and Collar (1953) first noted
the presence of the second spectrum for higher modes. Downs (1976) concerned the subject and
showed the difference of phase between the bending and shear deformation. Abba and Thomas
(1978) used a finite element model for the stability analysis of a Timoshenko beam resting on
an elastic foundation and its effect in natural frequencies, in which the effect of foundation in
the second spectrum was only suggested. Bhashyam (1981) showed that the second spectrum
exists for boundary conditions other than hinged-hinged.

Stephen (2006a, 2006b) presented a wave propagation analysis and compared with the ex-
act solution from plane stress elastodynamic theory, experimental results, and a finite element
solution. These works showed an inconsistent behavior of the second spectrum and concluded
that it should be disregarded. Manevich (2015) analyzed the free transverse waves in Timo-
shenko beam resting on Winkler foundation and gave and particular attention to clearing up
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the physical sense of the second spectrum of Timoshenko beam under this type of interaction.
Azevedo et al. (2016a, 2016b) discussed the influence of rotational inertia and shear deforma-
tion in the second spectrum and its characteristics for different boundary conditions.

The primary objective of this paper is to comprehend the effect of elastic foundation in the
occurrence of the second spectrum. A finite element with two nodes and two degrees of freedom
per nodes is developed with cubic and quadratic for the transverse displacement and the slope
due to bending, respectively. The polynomials are made interdependent by requiring them to
satisfy both of the static homogeneous differential equations associated with TBT. Numerical
examples present the influence of the Pasternak foundation on the dynamic response of the
Timoshenko beam for various boundary conditions. The influence of the foundation on the
second spectrum is concerned.

2 TIMOSHENKO BEAM MODEL

Timoshenko theory is a major improvement for non-slender beams and for high-frequency
responses where shear or rotary effects are not negligible, the governing decoupled differential
equations for transverse vibrations are (Soares and Hoefel, 2015):

∂4V (ξ)

∂ξ4
+ b2s2

∂2V (ξ)

∂ξ2
+ b2r2

∂2V (ξ)

∂ξ2
+ b4r2s2V (ξ)− b2V (ξ) = 0, (1)

∂4Ψ(ξ)

∂ξ4
+ b2s2

∂2Ψ(ξ)

∂ξ2
+ b2r2

∂2Ψ(ξ)

∂ξ2
+ b4r2s2Ψ(ξ)− b2Ψ(ξ) = 0, (2)

where ξ = x/L, b2 =
ρAL4

EI
ω2. ξ is the non-dimensional length of the beam, and V (x) and

Ψ(x) are the normal functions of displacement and slope due to bending, respectively. r and s
are coefficients related with the effect of rotatory inertia and shear deformation given by:

r2 =
I

AL2
and s2 =

EI

κAGL2
, (3)

We must consider two cases when obtaining Timoshenko beam model spatial solution. In
the first case, assume:√

(r2 − s2)2 + 4/b2 > (r2 + s2) which leads to b <
1

rs
, (4)

while in the second√
(r2 − s2)2 + 4/b2 < (r2 + s2) which leads to b >

1

rs
. (5)

Equations 4 and 5 presents the conditions to distinguish two behaviors of the Timoshenko
beam (Azevedo et al., 2016a, 2016b). The critical value is given by bcrit = 1/(rs). Substituting
this values in the relation presented for the natural frequency, we have the critical frequency
expressed as:

ωcrit =

√
κGA

ρI
. (6)
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Second spectrum of Timoshenko beam on Pasternak foundation

When b < bcrit, the solution of Eqs. 1 and 2 can be expressed respectively in trigonometric
and hyperbolic functions:

V (ξ) = C1cosh(α1ξ) + C2sinh(α1ξ) + C3cos(βξ) + C4sin(βξ), (7)
Ψ(ξ) = C ′1sinh(α1ξ) + C ′2cosh(α1ξ) + C ′3sin(βξ) + C ′4cos(βξ), (8)

with

α1 =
b√
2

[
−(r2 + s2) +

√
(r2 − s2)2 +

4

b2

]1/2
, (9)

β =
b√
2

[
(r2 + s2) +

√
(r2 − s2)2 +

4

b2

]1/2
(10)

and C and C ′ are constants.

Equations 7 and 8 have two eigenvalues, α1 and β, that are related with trigonometric and
hyperbolic sines and cosines, respectively. When b > bcrit the solution V (ξ) and Ψ(ξ) can be
expressed only in trigonometric functions:

V (ξ) = C1cos(α2ξ) + C2sin(α2ξ) + C3cos(βξ) + C4sin(βξ), (11)

Ψ(ξ) = C
′
1sin(α2ξ) + C

′
2cos(α2ξ) + C

′
3sin(βξ) + C

′
4cos(βξ), (12)

with

α2 =
b√
2

[
(r2 + s2)−

√
(r2 − s2)2 +

4

b2

]1/2
, (13)

β =
b√
2

[
(r2 + s2) +

√
(r2 − s2)2 +

4

b2

]1/2
(14)

and C̄ and C̄ ′ are constants. The relations between the constants in Eqs. 7 and 8 or Eqs. 11 and
12 can be found in Huang (1961).

The natural frequency ω is written in terms of two eigenvalues (α1 and β or α2 and β ) as
follows (Huang, 1961):

ωi =

√
β2 − α2

1√
r2 + s2

(
EI

ρAL4

)1/2

with i = 1, 2, ..., n. when b < bcrit, (15)

ωi =

√
β2 + α2

2√
r2 + s2

(
EI

ρAL4

)1/2

with i = 1, 2, ..., n. when b > bcrit. (16)

Table 1 presents frequency equations obtained considering b < bcrit and b > bcrit for
clamped-clamped ( c-c ) and hinged-hinged ( h-h ) Timoshenko beam.
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Table 1: Frequency equations of Timoshenko model

frequency equation (b < bcrit)

c-c 2− 2cosh(α1)cos(β) +
b(b2s2(r2 − s2)2 + (3s2 − r2))√

1− b2r2s2
sinh(α1)sin(β) = 0

h-h sin(β)sinh(α1) = 0

frequency equation (b > bcrit)

c-c 2− 2cos(α2)cos(β) +
b(b2s2(r2 − s2)2 + (3s2 − r2))√

b2r2s2 − 1
sin(α2)sin(β) = 0

h-h sin(α2)sin(β) = 0

3 PASTERNAK FOUNDATION MODEL

The equation of motion can be derived in the general case in which the Timoshenko beam
lays on a Pasternak foundation. Fig. 1 shows a scheme of uniform Timoshenko beam on a
Pasternak foundation. The uncoupled differential equations can be expressed in an analytical
form as (De Rosa, 1995; Wang and Stephens, 1977)

d4V (ξ)

dξ4
+ γ

d2V (ξ)

dξ2
+ ζV (ξ) = 0, (17)

d4Ψ(ξ)

dξ4
+ γ

d2Ψ(ξ)

dξ2
+ ζΨ(ξ) = 0, (18)

where

γ =
b2 (r2 + s2)− s2e2 + p2 (b2r2s2 − 1)

1 + s2p2
, ζ =

(b2 − e2) (b2r2s2 − 1)

1 + s2p2

and e and p are the coefficients related with foundation stiffness and foundation shear, respec-
tively, given by:

e2 =
kfL

4

EI
, p2 =

GpL
2

EI
. (19)

L

y

Gp

kf

x

Figure 1: A beam on a Pasternak foundation.
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Second spectrum of Timoshenko beam on Pasternak foundation

To solve the O.D.E. of Eqs. 17 and 18, two conditions must be considered. In the first case,
assume:

ζ < 0, which leads to: b <
1

rs
and b > e or b >

1

rs
and b < e. (20)

This condition results in the solutions to be expressed in trigonometric and hyperbolic functions:

V (ξ) = C1 cosh(α1ξ) + C2 sinh(α1ξ) + C3 cos(βξ) + C4 sin(βξ), (21)
Ψ(ξ) = C ′1 sinh(α1ξ) + C ′2 cosh(α1ξ) + C ′3 sin(βξ) + C ′4 cos(βξ), (22)

where:

α1 =

√
2

2

√
−γ +

√
γ2 − 4ζ (23)

β =

√
2

2

√
γ +

√
γ2 − 4ζ, (24)

and C and C ′ are constants.

The second case gives:

ζ > 0, which leads to: b >
1

rs
and b > e or b <

1

rs
and b < e. (25)

As a result, the solution is expressed only in trigonometric functions:

V (ξ) = C̄1 cos(α2ξ) + C̄2 sin(α2ξ) + C̄3 cos(βξ) + C̄4 sin(βξ), (26)
Ψ(ξ) = C̄ ′1 sin(α2ξ) + C̄ ′2 cos(α2ξ) + C̄ ′3 sin(βξ) + C̄ ′4 cos(βξ), (27)

where:

α2 =

√
2

2

√
γ −

√
γ2 − 4ζ, (28)

β =

√
2

2

√
γ +

√
γ2 − 4ζ, (29)

and C̄ and C̄ ′ are constants.

Equations 17 and 18 shows that the beam-foundation theory represents a generalization of
the beam theory. Disregarding the parameters e and p, the solution goes back to the solution of
a beam without foundation. Also, the Pasternak foundation theory is a higher generalization as
it includes the solution for Winkler when p = 0.

4 FINITE ELEMENT FORMULATION

Consider a uniform Timoshenko beam element on Pasternak Foundation as shown in Fig.
2. The beam element consists of two nodes and each node has two degrees of freedom: V , the
total deflection, and Ψ, the slope due to bending.

Solving the homogeneous form of Timoshenko beam static equations, one can obtain a
cubic and quadratic displacement functions as follows (Yokoyama, 1987):

Vi(ξ) =
3∑

i=0

λiξ
i and Ψi(ξ) =

2∑
i=0

λiξ
i. (30)

where λi and λi are constants.
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Gp

kf

b b

Vi Vj

i j

Ψi
Ψj

le

x, ξ

ξi = −1 ξj = 1

Figure 2: Beam on Pasternak foundation element

Using the non-dimension coordinate, ξ, and element length, le. 2, the matrix form of the
displacement V and total slope Ψ can be written as:

V = [N(ξ) ]{v }e and Ψ = [N(ξ) ]{v }e, (31)

where [N(ξ) ] and [N(ξ) ] are the shape functions and {v }e is the vector of nodal coordinates.
The subscript e represents expressions for a single element.

Therefore, the shape functions in Eq. 31 can be expressed as:

Ni(ξ) =
1

4(1 + 3β)


2(3β + 1)− 3(β + 1)ξ + ξ3

(le/2) [3β + 1− ξ − (3β + 1)ξ2 + ξ3]

2(3β + 1) + 3(2β + 1)ξ − ξ3

(le/2) [−3β − 1− ξ + (3β + 1)ξ2 + ξ3]



T

, (32)

and

Ni(ξ) =
1

4(1 + 3β)


(le/2) (3ξ2 − 3)

−1− 2(3β + 1)ξ + 6β + 3ξ2

(le/2) (3− 3ξ2)

−1 + 2(3β + 1)ξ + 6β + 3ξ2



T

, (33)

where β = 4EI/κGAle
2.

Thus, considering the foundation and the beam, the potential and kinetic energy for an
element length le are given by:

Ue =
1

2

2EI

le

∫ 1

−1

(
∂Ψ

∂ξ

)2

dξ +
1

2

2κGA

le

∫ 1

−1

(
2

le

∂V

∂ξ
−Ψ

)2

dξ +

1

2

kf le
2

∫ 1

−1
(V )2 dξ +

1

2

2Gp

le

∫ 1

−1

(
∂V

∂ξ

)2

dξ (34)

Te =
1

2

ρAle
2

∫ 1

−1

(
∂V

∂t

)2

dξ +
1

2

ρIle
2

∫ 1

−1

(
∂Ψ

∂t

)2

dξ. (35)
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Substituting the displacement expression, Eq. 31, into the potential energy, Eq. 35, gives:

Ue =
1

2
{v}Te

[
2EI

le

∫ 1

−1
[N(ξ)

′
]T [N(ξ)

′
]dξ

]
{v}e + (36)

1

2
{v}Te

[
2κGA

le

∫ 1

−1
[N(ξ)′ − le

2
N(ξ)]T [N(ξ)′ − le

2
N(ξ)]dξ

]
{v}e +

1

2
{v}Te

[
kf le

2

∫ 1

−1
[N(ξ)]T [N(ξ)] dξ +

2Gp

le

∫ 1

−1

[
N(ξ)′

]T [
N(ξ)′

]
dξ

]
{v}e,

where [N(ξ)′] = [∂N(ξ)/∂ξ].

Substituting the displacement expression, Eq. 31, into the kinetic energy, Eq. 35, gives:

Te =
1

2
{v̇}Te

[
ρAle

2

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ +

ρAle
2

∫ 1

−1
[N(ξ)]T [N(ξ)]dξ

]
{v̇}e, (37)

5 NUMERICAL RESULTS

To show the effects of the foundation parameters on the natural frequencies of a beam on
elastic foundation, some numerical examples are presented. The same parameter values are
used for all examples, except when specified. Consider a beam of uniform cross-section, such
that E = 210GPa, G = 80.8GPa, ρ = 7850 kg/m3, and L = 0.5m. Méndez-Sánchez et
al. (2005) presented, from comparison with experimental results, that the value for the shear
correction factor κ = 5(1 + ν)/(6 + 5ν) presents the best accuracy when considering the one-
parameter approach. Therefore, adopting this shear correction factor, ν = E/(2G)− 1 = 0.30
leads to κ = 0.867.

Table 2: Comparison table for the frequency parameters of analytic and FEM analyses.

Mode

Number

Without

Foundation

Winkler Pasternak

Analytic FEM-10e FEM-30e FEM-70e Analytic FEM-10e FEM-30e FEM-70e

1 9.5752 10.786 10.787 10.786 10.786 18.962 18.963 18.962 18.962

2 35.410 35.746 35.834 35.756 35.748 47.134 47.206 47.142 47.136

3 71.842 72.003 72.726 72.082 72.018 85.151 85.807 85.222 85.164

4 114.26 114.36 117.22 114.67 114.41 129.18 131.91 129.48 129.24

5 159.85 159.92 167.67 160.78 160.08 176.56 184.11 177.39 176.71

To analyze the influence of the presence of a foundation in the frequency parameters, Table
2 presents the comparison between analytic and FEM solutions with r = 0.04 for a hinged-
hinged beam. The second column presents the frequency parameters for a beam without foun-
dation (e = 0, p = 0), third to sixth, for Winkler foundation (e = 5, p = 0), and seventh to
tenth, for Pasternak foundation (e = 5, p = 5).

The results showed that the presence of a foundation increase the frequency parameter
and Pasternak presents the higher increase. Also, the Winkler increase reduces drastically as
the mode number rise. This reduction can also be observed in the frequency parameters of
Pasternak foundation. However, the decrease is not as high as presented by Winkler.
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For higher modes, the difference between the FEM and analytic solutions decreases when
the number of elements is increased. Therefore, FEM formulation presents a high accuracy.

The subsections present numerical examples for hinged-hinged and clamped-clamped beams
to analyze the effect of the Pasternak foundation in the different spectra of a Timoshenko beam.
The boundary conditions are defined in Table 3.

Table 3: Boundary Conditions

Boundary Condition Deflection Slope Moment Shear Force

Hinged V (ξ) = 0 -
∂Ψ(ξ)

∂ξ
= 0 -

Clamped V (ξ) = 0 Ψ(ξ) = 0 - -

5.1 Hinged-hinged beam

Tables 4 and 5 shows the natural frequencies for the first spectrum (TBT1) and the second
spectrum (TBT2), respectively, for a hinged-hinged beam without foundation (e = 0, p = 0,
and κ = 5/6) and a beam on a Pasternak foundation (e = 5, p = 5, and κ = 0.867), both
with r = 0.0722. The example provides 10 natural frequencies: the first five frequencies for
TBT1, the first four frequencies for TBT2, and the shear mode frequency. The results presented
for a beam without foundation corresponds to the presented by Azevedo et al. (2016b) as they
noticed that Levinson and Cooke (1982) appear to present a typographic error for the shear
mode value.

Table 4: Natural frequencies for the first spectrum of the hinged - hinged Timoshenko beam on Pasternak
foundation (rad/s)

Without Foundation Pasternak

Mode TBT1 FEM - 70e Mode TBT1 FEM - 70e

Number Frequency Frequency Error (%) Number Frequency Frequency Error (%)

1 6712 6712.53 0.0078 1 13811.77 13811.82 0.0004

2 22136 22139.61 0.0163 2 31754.35 31756.56 0.0069

3 40701 40720.56 0.0481 3 52820.30 52835.52 0.0288

4 60170 60227.69 0.0959 4 75052.86 75105.04 0.0695

5 79806 79936.26 0.1632 Shear Mode 81164 81205.98 0.0517

Shear Mode 81164 81205.98 0.0517 5 97669.76 97796.62 0.1299

The results showed that the significant increase in the TBT1 frequencies anticipates the
appearance of the TBT2. This behavior is due to the significant increase in the lower modes that
makes the frequencies near to the shear mode surpass it. The increase in the TBT2 frequencies
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Table 5: Natural frequencies for the second spectrum of the hinged - hinged Timoshenko beam on Pasternak
foundation (rad/s)

Without Foundation Pasternak

Mode TBT2 FEM - 70e Mode TBT2 FEM - 70e

Number Frequency Frequency Error (%) Number Frequency Frequency Error (%)

Shear Mode 81164 81205.98 0.0517 Shear Mode 81164 81205.98 0.0517

1 89077 89151.54 0.0837 1 89123.14 89186.38 0.0710

2 108044 108174.10 0.1204 2 108268.71 108395.04 0.1167

3 132212 132442.17 0.1741 3 132671.48 132909.75 0.1796

4 158992 159378.98 0.2434 4 159638.75 160048.73 0.2568

is minimal when compared with increases for TBT1. Also, the results are in good agreement
with those obtained by Azevedo et al. (2016b), ratifying the reliability of the FEM solution.

This result demonstrates an adverse behavior of the influence of the foundation in the fre-
quencies of a Timoshenko beam, as the first frequency of the TBT1 above the shear mode
still has a significant influence of the foundation. This fact shows that the foundation does not
present a significant influence only in TBT2 for frequencies above the critical, as was hinted by
Abbas and Thomas (1978).

Figure 3: Comparison for the first 10 natural frequencies between a hinged-hinged beam without foundation
and on Pasternak foundation (e = 5, p = 5) using 70 elements

The figure 3 shows the behavior of the modes shapes for a beam on Pasternak foundation.
The presence of the Pasternak foundation appears to not influence in the mode shapes. The two
distinct behavior below and above the critical frequency for the mode shapes still present. This
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distinction is due to the factorization of the frequency equation as shown in Table 1. Above
the critical frequency, the mode presents two eigenvalues, one associated with sin(α2) = 0 and
other with sin(β) = 0, which generates two distinct modes (Levinson and Cooke, 1982).

The difference between the amplitude of the modes from TBT1 and TBT2 is due to the
difference in phase between the bending and shear deformation. The deformations due to shear
and deflection are in the same phase for TBT1 and are summed to give the total amplitude.
For TBT2, the shear and bending deformation are opposed with the amplitude equal to their
difference (Downs, 1976).

5.2 Clamped-clamped beam

Table 6 shows the first 10 natural frequencies and the critical frequency for a clamped-
clamped beam, in which r = 0.0722 and κ = 0.867, without foundation (e = 0, p = 0) and on
Pasternak (e = 5, p = 5) using 70 elements.

Table 6: Natural frequencies for clamped-clamped Timoshenko beam on Pasternak foundation (rad/s)

Without Foundation Pasternak Foundation

Mode

Number
Frequency

Mode

Number
Frequency

1 12287.17 1 17524.31

2 26913.73 2 35532.31

3 43935.12 3 55404.86

4 61854.50 4 75867.73

5 80485.92 Critical Frequency 81163.51

Critical Frequency 81163.51 5 89591.95

6 88741.16 6 96786.51

7 100196.61 7 109680.43

8 107438.89 8 119348.05

9 120106.18 9 134117.56

10 130881.59 10 142587.62

The tables show that the foundation anticipates the critical frequency by increasing the
natural frequencies, as seen in the hinged-hinged case. Also, for some frequencies above the
critical, the increase is not notorious as showed for frequencies below the critical.

The figure 4 shows that the modes shapes for a beam on Pasternak foundation present
a slightly different from the modes shapes without foundation. Also, the mode shapes still
present the behavior observed by Smith (2008), in which the number of peaks in the mode
shapes increases by a unit with the increase in mode number for frequencies lower than the
critical, but for frequencies above, the number of peaks increases with each pair of modes.
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Figure 4: Comparison for the first 10 natural frequencies between a clamped-clamped beam without foun-
dation and on Pasternak foundation (e = 5, p = 5) using 70 elements

For the clamped-clamped beam, the characteristic function does not factorizes, as can be
seen in Table 1, thus, the mode shapes does not present two explicit distinguishable spectra.
However, as the foundation does not present a significant influence in the TBT2 frequencies
for the hinged-hinged case, the difference in the influence between frequencies allows inferring
that the frequencies with a lower increase are from the TBT2 and those with a more substantial
increase belongs to TBT1.

Therefore, even though the clamped-clamped boundary condition does not present the fac-
torization that characterizes and distinguish the second spectrum, there is some difference be-
tween the behavior below and above the critical frequency and between the frequencies above
the critical. These differences permit considering that the clamped-clamped beam presents the
phenomena of the second spectra as shown by the hinged-hinged beam, even though it is not
explicit.

6 CONCLUSIONS

In this paper, the full development and analysis of TBT for the transversely vibrating uni-
form beam were presented for classical boundary condition. A finite element is developed with
cubic and quadratic polynomials for the total deflection and slope, respectively, where the poly-
nomials are made interdependent by requiring them to satisfy both of the static homogeneous
TBT differential equations. Numerical examples are presented for boundary conditions to study
beam on Pasternak foundation behavior above critical frequency. The results showed that the
presence of the foundation anticipates the second spectrum and does not have a significant influ-
ence in its frequencies. For a clamped-clamped beam, the foundation slightly affects the mode
shapes. Also, the presence of the foundation permits a distinction between the two spectra for
boundary conditions that do not factorize.
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