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Abstract. This work investigates time-harmonic strain and displacement fields within trenched soils
through an Indirect-BEM (IBEM) approach. The method consists of a superposition of Green’s functions
for surface and buried loads. Solutions for surface loads are used to discretize a rigid plate at the surface
of the soil, on top of which time-harmonic vertical loads are applied. Solutions for buried load are used
together with zero-stress boundary conditions to model the presence of trenches in the soil. The soil
is modeled as homogeneous isotropic or transversely isotropic half-spaces, for which classical Green’s
functions are available in the literature. Stress and displacement fields within the trenched half-space
containing a surface plate are related through sets of fictitious loads. Post-processing from these loads
yield quantities such as the displacement field anywhere in the half-space. This work uses these post-
processed quantities to study how the ground vibration propagating from the loaded plate is affected by
the presence of trenches.

Keywords: Indirect-BEM, Dynamic Soil-Structure Interaction, Trenches and Barriers, Wave Propaga-
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Displacement and strain fields in trenched soils

1 Introduction

The Indirect-BEM (IBEM) is an alternative formulation for the classical (Direct-) Boundary El-
ement Method, in which displacement and traction fields are connected through fictitious loads, rather
than directly through singular auxiliary solutions. The solution for a given boundary value problem arises
from the solution of the fictitious loads that satisfy simultaneously the displacement and traction fields at
discrete points of the boundary of the problem. Displacement and traction fields, and quantities deriving
from them, can be computed anywhere else through post-processing of the fictitious loads. This work
illustrates the accuracy of this technique for the case of a homogeneous half-space containing trenches
of different lengths. The trench surrounds a rigid circular plate at the surface of the half-space, on which
a time-harmonic vertical load is applied. Green’s functions necessary for modeling the soil part are ob-
tained from a classical solution in terms of Hankel transforms (Rajapakse and Wang [1]). Continuity
and equilibrium conditions throughout the foundation-soil interface are established at discrete points,
which results in an elegant algebraic expression involving external loads and fictitious loads at the inter-
faces. The present model considers contact tractions to be uniformly distributed within each discretized
interface segment, which nonetheless yields accurate results.

Barros [2] proprosed a boundary element model of a rigid circular plate under an external vertical
dynamic excitation surrounded by a buried circular trench with negligible thickness in order to analyze
the influence of trench position and depth in its vibration attenuation efficiency. The influence of soil
properties was also investigated. An alternative to open trenches was presented in Barros and Mesquita
[3] in which the screening capability of a concrete-filled trench was compared with that of an empty
trench. This analysis showed that the attenuation performance of an empty trench is significantly higher
than that of a filled one.

In many applications of a single trench, the minimum depth to yield any significant attenuation
performance can reach tens of meters, which results in an open trench stability problem. As alternative
solution, models encompassing multiple trenches were developed. An implementation of Barros model
was proposed by Barros and Mesquita [4] which presented a second trench surrounding the surface
plate. The efficiency of double trench isolation was compared with that of a single trench. A similar
model was presented in Barros and Mesquita [5], who investigated the isolation capability of double
circular trenches surrounding the surface plate under an external horizontal dynamic load. In both cases,
results showed an increase in the isolation efficiency of double trenches in comparison with that of a
single trench. All those works evaluated the efficiency of buried trenches only through analyses of the
displacement fields along the ground surface.

In this work, the resulting fictitious loads from the discretized half-space are used to compute dis-
placement fields in a mesh within the half-space. Dynamic displacement and strain fields are obtained
from these for an area of the half-space encompassing the foundation and the trench. The results for
an untrenched isotropic half-space show clearly undisturbed, outward-propagating pressure and shear
waves, the length of which matches the calculated wavelength in that medium, as well as a noticeable
compliance with Sommerfeld’s radiation condition (Sommerfeld [6]). The presence of the trench af-
fects the propagation of both pressure and shear waves significantly, and the degree by which this occurs
depends on the length of the trench.

1.1 Statement of the problem

Consider a three-dimensional, transversely isotropic, homogeneous, viscoelastic half-space, the
plane of isotropy of which is parallel to its free surface. The medium is described by five indepen-
dent elastic constants c11, c12, c13, c33, and c44, mass density ρ, and damping factor β. A mass-
less, rigid, circular plate of radius a rests on the surface of the half-space, the center of which is
aligned with the origin of the coordinate system. The plate is subjected to a time-harmonic verti-
cal load F (t). A circular trench of radius R, depth h, and zero thickness, surrounds the plate.
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Figure 1. Rigid plate surrounded by circular trench within a homogeneous half-space.

2 IBEM formulation of a trench

A subdomain technique is used with the IBEM formulation of a trench. The half-space divided in
two subdomains is shown in Fig. 2. Region 1 encompasses the rigid circular plate and the circular soil
delimited by the trench. Region 2 is formed by the remaining soil. This split yields three interfaces: the
soil-foundation interface, the trench faces, and regions 1-2.

Trench faces (b)
Regions 1-2

interface (c)

Soil-foundation

interface (a)

Region 1

Region 2

Figure 2. Regions and interfaces of the divided half-space.

Uniformly distributed radial qir and vertical qiz fictitious loads are applied at the discretized interface
elements of region i. These fictitious loads satisfy simultaneously the displacement and traction fields at
the center point of each element. The displacement and traction fields are given respectively by:

uik = Uikqik, (1)

tik = Tikqik, (2)
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in which uik and tik are the vectors of radial ur, tr and vertical uz , tz displacements and tractions
at elements of interface k in region i, qik is the vector of radial qr and vertical qz fictitious loads,
and Uik and Tik are, respectively, the matrices of displacement and stress influence functions which
are non-singular Green’s functions. This formulation uses influence functions for dynamic response of
a homogeneous, transversely isotropic half-space due to axisymmetric distributed loads developed by
Rajapakse and Wang [1].

The surface plate is subjected to a vertical load. The boundary conditions imposed in the soil-
foundation interface (a) are expressed by:

(uzj)1a = u0, (3)

(urj)1a = 0, j = 1, ..., Na (4)

Fz = 4π

Na∑
j=1

(tzjrjlj)1a, (5)

in which Na is the number of elements in the soil-foundation interface, u0 is the rigid foundation dis-
placement, Fz is the vertical load applied to the plate, rj is the radial position of the middle of element
j, and lj is the radial width of element j. In the matrix form, this can be written as:

u1a = Cu0, (6)

f = Dt1a. (7)

In this model, the trenches are formulated as traction-free surfaces embedded in the soil. That is,
boundary conditions established at interfaces (b) are:

t1b = 0, (8)

t2b = 0. (9)

This model assumes that regions 1 and 2 are perfectly bonded at interface (c). Displacement com-
patibility and traction equilibrium are imposed and result in:

u1c − u2c = 0, (10)

t1c + t2c = 0. (11)

Combining Eqs. 1, 2, 6 and 7, the matrix system for region 1 which involves all three interfaces,
can be represented by:


U1a −C

T1b 0

T1c 0

DT1a 0




q1a

q1b

q1c

u0

 =


0

0

t1c

f

 . (12)
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The solution of this matrix system together with Eq. 1 yields:

u1c =
[
U1c 0

]


U1a −C

T1b 0

T1c 0

DT1a 0



−1 
0

0

t1c

f

 , (13)

which in compact form gives

u1c = M1t1c +m1f . (14)

A similar procedure can be applied to region 2:

 T2b

T2c

 q2b

q2c

 =

 0

t2c

 , (15)

then

u2c = U2c

 T2b

T2c

−1  0

t2c

 , (16)

or

u2c = M2t2c. (17)

The boundary conditions at the interface (c) presented in Eqs. 10 and 11, yield u1c = u2c and
t1c = −t2c. The final system of equations is given by:

(M1 +M2)t1c = −m1f . (18)

The solution of this system of equations furnishes the tractions t1c = −t2c at interface (c), which
can be used to calculate the fictitious loads qik and the foundation displacement u0, through equations
12 and 15.
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3 Post-processing displacement and strain fields

The IBEM formulation for the surface plate and a buried trench furnishes the fictitious loads applied
at each discretized interface element. Consequently, the displacement fields and quantities deriving from
this can be evaluated anywhere in the half-space through post-processing from those loads. The displace-
ment fields at each region are obtained by the Eq. 1 in which relates the displacement fields at nodes of a
mesh within the half-space and fictitious loads through influence functions. Strain fields throughout the
half-space are obtained using interpolation of displacements between nodes of the elements in the mesh.
An undeformed and deformed square element of the mesh is shown in Fig. 3.

r

z

Undeformed

Deformed

r

z

(i, j)

(i+ 1, j)

(i, j + 1)
(i+ 1, j + 1)

Figure 3. Undeformed and deformed square element.

Each element has volumetric and shear strain that are, for axisymmetric strain, given respectively
by:

ε = εrr + εzz, (19)

γ = εrz, (20)

in which εrr and εzz are respectively the normal strain in direction r and z, and εrz is the distortion of the
element. Supposing the deformation is very small, those normal strain and the distortion can be written
as:

εrr =
u
(i+1,j)
r − u

(i,j)
r

r
+
u
(i+1,j+1)
r − u

(i,j+1)
r

r
, (21)

εzz =
u
(i,j+1)
z − u

(i,j)
z

z
+
u
(i+1,j+1)
z − u

(i+1,j)
z

z
, (22)

εrz =
1

2

(
u
(i,j+1)
r − u

(i,j)
r

z
+
u
(i+1,j+1)
z − u

(i,j+1)
z

r

)
, (23)

in which u(k,m)
r and u(k,m)

z are respectively the radial and vertical displacements at node (k, m), and r
and z are respectively the horizontal and vertical lengths of the undeformed element. Note that the sum
of Eqs. 21 and 22 are taken to represent the volumetric strain and Eq. 23 the shear strain for an element.
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4 Numerical results

Figure 4a shows the volumetric strain within an isotropic half-space without a trench. The corre-
sponding case with a trench of radius R/a=3 and depth h/a=1 is shown in Fig. 4b. Please download the
file with animations by clicking [here]. All figures in this section are animations, which can be played in
the PDF version of this article.

(a) Untrenched soil (b) Trenched soil

Figure 4. Volumetric strain throughout the half-space with and without a trench of h/a=1.

Yellow shades in these figures correspond to positive values of volumetric strain, while blue shades
indicate negative volumetric strain. Dark shades of blue indicate the propagation of compressive waves
and a parcel of Rayleigh waves around the free surface resulting from the external load. The animation
shows that wave propagate from the source (the plate) without reflection, which shows the compliance
of the model to Sommerfeld’s Radiation condition. Figure 4b shows that the presence of the trench
causes compressive waves to propagate mostly in the vertical direction. In this case of short trench, part
of the waves propagates around the bottom of the trenches through to the other side. The amplitude of
these waves beyond the trench is almost that of untrenched portions of the half-space under the plate.
This indicates that this length of trench is insufficient to block ground vibrations for this intensity of
excitation.

Figure 5 considers the incorporation of a longer trench (h/a=4). These results show a strong reduc-
tion of the amplitude of the waves beyond the trench, towards shades of green, which indicate values of
strain around zero. This shows an increased ability of this trench to control propagation of waves from
the plate.

Figure 5. Volumetric strain within the half-space with a trench of h/a=4.

CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019

https://drive.google.com/open?id=1JJQk-AfrmSdCy9MlJaYh4zCZlN8tPmwK


Displacement and strain fields in trenched soils

A comparison between Figs. 4a and 5 shows that the presence of the deep trench causes most of
the propagating energy to occur in the vertical direction, differently than in the untrenched half-space, in
which this propagation occurs in all direction more uniformly.

Conversely, Fig. 6 shows the shear strain within the half-space for the case of a short trench (R/a=3,
h/a=1) and its untrenched half-space counterpart. The mirrored colors in these results correspond to
the distortion of the medium to be happening in different directions in each side, which is physically
consistent.

(a) Untrenched soil (b) Trenched soil

Figure 6. Shear strain throughout the half-space with and without a trench of h/a=1.

Figure 6a shows that shear strain waves propagate mostly in the horizontal direction. The fading of
the colors for points deep within the half-space indicate that shear waves are more prominent towards
the free surface. At the surface, these waves correspond to the shear component of the Rayleigh waves.
The pressure component had been shown in Fig. 4a.

Figure 6b shows that a trench of depth h/a=1 is too short to block shear waves as well. The amplitude
of excitation due to these waves beyond the trench is of the order of those within the trenched area.

Finally, Fig. 7 shows the efficiency of a longer trench (h/a=4) in blocking shear waves originating
from the plate. Strain fields beyond the trench in this case are closer to shades of green (closer to zero)
than in the short trench case. One may also point out the inversion of signal of the shear waves as they
reach the trench walls, indicating their reflection.

Figure 7. Shear strain within the half-space with a trench of h/a=4.
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4.1 Effect of anisotropy

This section considers the effect of the anisotropy of the soil in shear and volumetric strains of the
soil. This analysis considers c′11 = 6.0, c′12 = 1.0, c′13 = 2.648 and c′33 = 3.0 (c′ij = cij/c44). Figure
8 shows the volumetric strain field within an untrenched transversely isotropic half-space and within a
half-space with a long trench (h/a=4). A comparison between these results and their isotropic half-space
counterparts (Fig. 5) shows that the propagation of pressure waves is flattened in the vertical direction,
which is physically consistent with this medium being stiffer horizontally. Higher elasticity modulus in
a given direction correspond to more quickly-propagating waves in that direction. In this case, in which
the energy would mostly propagate in the horizontal direction without the presence of a trench, a stark
difference is observed in the wave propagation after the inclusion of the trench. This difference is larger
than in the isotropic case, in which waves propagate in all directions more uniformly.

(a) Untrenched soil (b) Trenched soil

Figure 8. Volumetric strain within the half-space with a trench of h/a=4.

Figure 9 shows the corresponding shear strain fields in the untrenched and trenched transversely
isotropic half-space. The effect of anisotropy in the strain fields is less significant in this case than in the
case of volumetric strain fields.

(a) Untrenched soil (b) Trenched soil

Figure 9. Shear strain within the half-space with a trench of h/a=4.
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5 Concluding remarks

This article presented volumetric and shear strain fields within trenched and untrenched soils sup-
porting a surface plate foundation. These quantities were obtained through post-processing from fic-
titious loads of an indirect formulation of the boundary element method. The results show physical
consistency of the model in describing wave propagation phenomena and complying with Sommerfeld’s
Radiation Condition. The model contributes to our understanding of geotechnical solutions for wave
propagation control.
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